cho a thuộc Q ,b thuộc I chứng minh rằng a b là vô tỉ
choc thuộc I,d thuộc Q chứng minh c.d là số vô tỉ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\sqrt{2}\)là số vô tỉ
\(\sqrt{3}\)là số vô tỉ
\(\Rightarrow\sqrt{2}+\sqrt{3}\)là số vô tỉ ( đpcm )
b) tương tự :
\(\hept{\begin{cases}\sqrt{2}vôti\\\sqrt{3}vôti\\\sqrt{5}vôti\end{cases}}\)
\(\Rightarrow\sqrt{2}+\sqrt{3}+\sqrt{5}\)vô tỉ
can bac 2 cua 2 la 1so vo ti nen cong voi a bat ki (a thuoc Z+)thi a van la so vo ti
Giả sử \(\sqrt{2}+a=b\)là số hữu tỉ
\(=>\sqrt{2}=b-a\)mà b là số hữu tỉ và a là số nguyên dương nên \(\sqrt{2}\) là số hữu tỉ (trái với đề bài)
=>\(\sqrt{2}+a\) với mọi \(a\)thuộc Z+
giả sử a + b = x là 1 số hữu tỉ
Ta có : b = x - a
Mà a \(\in\)Q , x \(\in\)Q nên b \(\in\)Q ( trái với đề bài là b \(\in\)I )
Vậy ...
G/s căn a là số hữ tỉ
=> căn a viết dưới dạng b/c ( trong đó UCLN ( b,c) = 1)
=> ( căn a)^2 = b^2 / c^2
=> a = b^2/c^2
=> a.c^2 = b^2 => b^2 chia hết cho a => b chia hết cho a (1)
b chia hết cho a => b = at
TA có b^2 = a.c^2 => (at)^2 = a.c^2 => a^2.t^2 = a. c^2 => c^2 = a.t^2 => c chia hết cho a (2)
Từ (1) và (2) => b và c chia hết cho a => a và b có UC là a
theo g/s UCLN a,b = 1 trái với G/s
=> căn a là số vô tỉ
Trả lời:
+ Giả sử \(\sqrt{a}\notin I\)
\(\Rightarrow\sqrt{a}\inℚ\)
\(\Rightarrow a=\frac{m}{n}\)với\(\left(m,n\right)=1;m,n\inℕ\)
+ Vì a không là số chính phương
\(\Rightarrow\sqrt{a}\notinℕ\)
\(\Rightarrow\frac{m}{n}\notinℕ\)
\(\Rightarrow n>1\)
+ Vì \(\sqrt{a}=\frac{m}{n}\)
\(\Rightarrow a=\frac{m^2}{n^2}\)
\(\Rightarrow m^2=an^2\)
+ Vì \(n>1\)
\(\Rightarrow\)Giả sử n có ước nguyên tố là p
Mà\(n\inℕ\)
Mà\(m^2=an^2\)
\(\Rightarrow m⋮p\)
\(\Rightarrow\)m,n có ƯC là p (Trái với giả thiết (m,n) = 1)
\(\Rightarrow\)Giả sử \(\sqrt{a}\notin I\)sai
\(\Rightarrow\sqrt{a}\in I\)
Vậy nếu \(a\inℕ\)và a không phải là số chính phương thì\(\sqrt{a}\)là số vô tỉ.
Hok tốt!
Good girl