rút gọn các phân số sau:
a, \(\dfrac{2023-2023.6}{2023.15}\)
b, \(\dfrac{2025.25+2025.75}{100.7}\)
c,\(\dfrac{1000000}{2025}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Các phân số tối giản là \(\dfrac{1}{3};\dfrac{4}{7};\dfrac{72}{73}\) vì ƯCLN(1;3)=1; ƯCLN(4;7)=1; ƯCLN(72;73)=1
b:
Các phân số rút gọn được là
\(\dfrac{8}{12}=\dfrac{8:4}{12:4}=\dfrac{2}{3}\)
\(\dfrac{30}{36}=\dfrac{30:6}{36:6}=\dfrac{5}{6}\)
a) \(\dfrac{8}{16}=\dfrac{8:8}{16:8}=\dfrac{1}{2}\)
b) \(\dfrac{10}{30}=\dfrac{10:10}{30:10}=\dfrac{1}{3}\)
c) \(\dfrac{24}{18}=\dfrac{24:6}{18:6}=\dfrac{4}{3}\)
d) \(\dfrac{20}{28}=\dfrac{20:4}{28:4}=\dfrac{5}{7}\)
a. \(\dfrac{8,5-8,2}{16}=\dfrac{0,3}{16}=\dfrac{3}{160}\)
b. \(\dfrac{2\cdot14}{7\cdot8}=\dfrac{1\cdot2}{1\cdot4}=\dfrac{2}{4}=\dfrac{1}{2}\)
c. \(\dfrac{11\cdot4-11}{2-13}=\dfrac{11\left(4-1\right)}{-11}=\dfrac{1\cdot3}{-1}=-3\)
d. \(\dfrac{49+7\cdot49}{49}=\dfrac{49\cdot\left(1+7\right)}{49}=\dfrac{8}{1}=8\)
Bài 1:
a) \(a=2\cdot3\cdot5\cdot43\)
\(b=7200=2^5\cdot3^2\cdot5^2\)
\(c-4680=2^3\cdot3^2\cdot5\cdot13\)
b) \(\dfrac{8440}{5910}=\dfrac{8440:10}{5910:10}=\dfrac{844}{591}\)
\(\dfrac{1245}{3450}=\dfrac{1245:15}{3450:15}=\dfrac{83}{230}\)
Bài 2:
a) Ước nguyên tố của 140 là:
\(ƯNT\left(140\right)=\left\{2;5;7\right\}\)
Ước nguyên tố của 138 là:
\(ƯNT\left(138\right)=\left\{3;23;2\right\}\)
b) \(A=\dfrac{2^{10}+4^6}{8^4}\)
\(A=\dfrac{2^{10}+2^{12}}{2^{12}}\)
\(A=\dfrac{2^{10}\cdot\left(1+2^2\right)}{2^{12}}\)
\(A=\dfrac{1+4}{2^2}\)
\(A=\dfrac{5}{4}\)
\(B=\dfrac{6^{10}+15\cdot2^{10}\cdot3^9}{12\cdot8^3\cdot27^3}\)
\(B=\dfrac{2^{10}\cdot3^{10}+5\cdot2^{10}\cdot3^{10}}{2^{11}\cdot3^{10}}\)
\(B=\dfrac{2^{10}\cdot3^{10}\cdot\left(1+5\right)}{2^{11}\cdot3^{10}}\)
\(B=\dfrac{1+5}{2}\)
\(B=3\)
B = \(1-\dfrac{1}{2025}\) \(A=1-\dfrac{1}{2024}\)
Vì \(\dfrac{1}{2025}< \dfrac{1}{2024}\)
Nên B>A
Ta có :
\(\dfrac{2023}{2024}\)=\(\dfrac{2024-1}{2024}\)=\(\dfrac{2024}{2024}\)-\(\dfrac{1}{2024}\)=1-\(\dfrac{1}{2024}\)
\(\dfrac{2024}{2025}\)=\(\dfrac{2025-1}{2025}\)=\(\dfrac{2025}{2025}\)-\(\dfrac{1}{2025}\)=1=\(\dfrac{1}{2025}\)
Ta thấy: \(\dfrac{1}{2024}\) lớn hơn \(\dfrac{1}{2025}\)
Nên : \(\dfrac{2023}{2024}\) lớn hơn \(\dfrac{2024}{2025}\)
⇒A lớn hơn B
1: B là số nguyên
=>n-3 thuộc {1;-1;5;-5}
=>n thuộc {4;2;8;-2}
3:
a: -72/90=-4/5
b: 25*11/22*35
\(=\dfrac{25}{35}\cdot\dfrac{11}{22}=\dfrac{5}{7}\cdot\dfrac{1}{2}=\dfrac{5}{14}\)
c: \(\dfrac{6\cdot9-2\cdot17}{63\cdot3-119}=\dfrac{54-34}{189-119}=\dfrac{20}{70}=\dfrac{2}{7}\)
Theo đề, ta có hệ:
b-a=21 và a/b=16/23
=>a-b=-21 và 23a-16b=0
=>a=48 và b=69
Phân số cần tìm là 48/69
a, \(\dfrac{2023-2023.6}{2023.15}=\dfrac{2023.\left(1-6\right)}{2023.15}=-\dfrac{5}{15}=\dfrac{-1}{3}\)
b, \(\dfrac{2025.25+2025.75}{100.7}=\dfrac{2025.\left(25+75\right)}{100.7}==\dfrac{2025.100}{100.7}=\dfrac{2025}{7}\)
c, \(\dfrac{1000000}{2025}=\dfrac{1000000:25}{2025:25}=\dfrac{40000}{81}\)