Có ai biết không giúp mình với
Chứng minh rằng nếu a/b < c/d thì a/b < a+c/b+d < c/d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}>\frac{c}{d}\)
\(\Rightarrow ad>bc\)
\(\Rightarrow ad+ab>bc+ab\)
\(\Rightarrow a\left(b+d\right)>b\left(a+c\right)\)
\(\Rightarrow\frac{a}{b}>\frac{a+c}{b+d}\)( 1 )
\(\Rightarrow ad+cd>bc+cd\)
\(\Rightarrow d\left(a+c\right)>c\left(b+d\right)\)
\(\Rightarrow\frac{a+c}{b+d}>\frac{c}{d}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{a}{b}>\frac{a+c}{b+d}>\frac{c}{d}\)
xin lỗi nha mình không biết chủ đề nào nên mới chọn đại đây là bài của lớp 7 nha các bạn
Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{b}{a}=\dfrac{d}{c}\)
\(\Leftrightarrow1+\dfrac{b}{a}=1+\dfrac{d}{c}\)
\(\Leftrightarrow\dfrac{a+b}{a}=\dfrac{c+d}{c}\)
\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng t/c dtsbn:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\Leftrightarrow\dfrac{a+b}{a}=\dfrac{c+d}{c}\)
\(\frac{a+b}{b+c}=\frac{c+d}{d+a}=\frac{a+b+c+d}{b+c+d+a}=1\) (dãy tỉ số bằng nhau)
\(\Rightarrow\frac{a+b}{a+c}=1\Leftrightarrow a+b=b+c\Rightarrow a=c\)(đpcm)
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
\(\left\{{}\begin{matrix}\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\\\dfrac{a}{c}=\dfrac{b}{d}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\left(\dfrac{a}{c}\right)^2=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\\\left(\dfrac{a}{c}\right)^2=\dfrac{ab}{cd}\end{matrix}\right.\)
\(\Rightarrow\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)