cho đường tròn tâm O đi qua 2 điểm C và D trên tia đối của tia CD lấy điểm M từ M vẽ tiếp tuyến MA và MB gọi I là trung điểm của CD chứng minh KD là tiếp tuyến của đường tròn tâm O
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔOCD can tại O
mà OI là trung tuyến
nên OI vuông góc CD
Xét tứ giác OAMB có
góc OAM+góc OBM=180 độ
=>OAMB là tứ giác nội tiếp
=>O,A,M,B cùng thuộc 1 đường tròn đường kính OM(1)
Vì ΔOIM vuông tại I
nên I nằm trên đường tròn đường kính OM(2)
Từ (1), (2) suy ra ĐPCM
b: Xét ΔMAC và ΔMDA có
góc MAC=góc MDA
góc AMC chung
=>ΔMAC đồng dạng vơi ΔMDA
=>MA/MD=MC/MA
=>MA^2=MD*MC
a: ΔOCD cân tại O
mà OI là trung tuyến
nên OI là đường cao
Xét tứ giác MAOI có
góc MAO=góc MIO=90 độ
nên MAOI là tứ giác nội tiếp
b: Xét ΔMAC và ΔMDA có
góc MAC=góc MDA
góc AMC chung
=>ΔMAC đồng dạng với ΔMDA
=>MA/MD=MC/MA
=>MA^2=MC*MD
b: Xét ΔMCO có
CA là đường trung tuyến
CA=OM/2
Do đó: ΔMCO vuông tại C
Bạn tự vẽ hình được không? Rồi mình giúp, vì mình không biết sử dụng phần mềm vẽ hình.
a) Ta có: MA, MB là tiếp tuyến
=> \(OA\perp MA,OB\perp MB\)
=> \(\widehat{OBM}+\widehat{OAM}=90^o+90^o=180^o\)
=> Tứ giác OBMA nội tiếp
b) Xét tam giác MCA và MAD có
góc CMA=góc AMD
góc MDA=MAC
=> tam giác MCA đồng dạng AMD
=> \(\frac{MA}{MC}=\frac{AD}{MA}\Rightarrow MA^2=MD.MC\)
c) Gọi J là trung điểm OM
Ta có: tam giác OAM vuông tại A=> JA=JO=JM
tam giác OBM vuông tại B => JB=JM=JO
=> JA=JB=JO=JM=R
=> J là tâm đường tròn ngoại tiếp OAMN có bán kính R
I là trung điểm CD
=> OI vuông CD
=> Tam giác OIM vuông tại I có J là trung điểm OM
=> JO=JI=JM=R
=> I thuộc đường tròn ngoại tiếp tứ giác OAMN