K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2017

tìm GTLN nha mik QuÊn

18 tháng 9 2023

a) \(4x-\sqrt[]{3\left(3x-1\right)}=3x-1\)

\(\Leftrightarrow\sqrt[]{3\left(3x-1\right)}=x+1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+1\ge0\\3\left(3x-1\right)=\left(x+1\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\9x-3=x^2+2x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\left(a\right)\\x^2-7x+4=0\left(1\right)\end{matrix}\right.\)

Giải \(pt\left(1\right):\)

\(\Delta=49-16=33\Rightarrow\sqrt[]{\Delta}=\sqrt[]{33}\)

Phương trình (1) có 2 nghiệm phân biệt

\(\left[{}\begin{matrix}x=\dfrac{7+\sqrt[]{33}}{2}\\x=\dfrac{7-\sqrt[]{33}}{2}\end{matrix}\right.\) (thỏa \(\left(a\right)\))

Khoanh tròn vào chữ cái đứng trước câu trả lời đúng  Câu 1: Kết quả phép tính bằng?a,6x^2-1B. 6 x-1C.6x^2-2xD.3x^3-2xCâu 2: Kết quả phép tính 12x^6y^4:3x^2y bằng?A. 4x^3y^3B. 4x^4y^3C.D. Câu 3: Đa thức 3x+9y được phân tích thành nhân tử là?A. 3(x+y)B. 3(x+6 y)C. 3 x yD. 3(x+3 y)Câu 4: Hình thang có độ dài hai đáy là 6cm và 14 cm. Vây độ dài đường đường trung bình của hình thang đó là?A. 20 cmB. 3cmC....
Đọc tiếp

Khoanh tròn vào chữ cái đứng trước câu trả lời đúng  

Câu 1: Kết quả phép tính bằng?

a,6x^2-1

B. 6 x-1

C.6x^2-2x

D.3x^3-2x

Câu 2: Kết quả phép tính 12x^6y^4:3x^2y bằng?

A. 4x^3y^3

B. 4x^4y^3

C.4 x^{4} y^{4}

D. 8 x^{4} y^{3}

Câu 3: Đa thức 3x+9y được phân tích thành nhân tử là?

A. 3(x+y)

B. 3(x+6 y)

C. 3 x y

D. 3(x+3 y)

Câu 4: Hình thang có độ dài hai đáy là 6cm và 14 cm. Vây độ dài đường đường trung bình của hình thang đó là?

A. 20 cm

B. 3cm

C. 7 cm

D. 10 cm

Câu 5: Hình nào sau đây vừa có tâm đối xứng, vừa có trục đối xứng?

A. Hình bình hành

B. Hình thoi

C. Hình thang vuông

D. Hình thang cân

Câu 6: Tứ giác có bốn góc bằng nhau thì mỗi góc bằng?

A. 900

B. 1800

C. 600

D. 3600

Câu 7: Đa thức x^3+8 được phân tích thành nhân tử là?

a, (x-2) (x^2+2x+4)

b, (x-8) (x^2+16x+64)

c, (x+2) (x^2-2x+4)

d, (x+8) (x^2-16x+64)

Câu 8: Đa thức 4x^2y-6xy^2+8y^3 có nhân tử chung là?

A. 2y

B. 2xy

C. y

D. xy

2
19 tháng 10 2021

câu 2: c,4x^4 y^4

 

19 tháng 10 2021

\(2,B\\ 3,D\\ 4,D\\ 5,B,C\\ 6,A\\ 7,C\\ 8,A\)

3 tháng 10 2016

de qua

6 tháng 8 2018

x.(2.x-1)+1/3-2/3.x=0

29 tháng 6 2021

Bài 2 :

\(A=4x^2-2.2x.2+4+1\)

\(=\left(2x-2\right)^2+1\)

Thấy : \(\left(2x-2\right)^2\ge0\)

\(A=\left(2x-2\right)^2+1\ge1\)

Vậy \(MinA=1\Leftrightarrow x=1\)

\(B=\left(5x\right)^2-2.5x.1+1-4\)

\(=\left(5x-1\right)^2-4\)

Thấy : \(\left(5x-1\right)^2\ge0\)

\(\Rightarrow B=\left(5x-1\right)^2-4\ge-4\)

Vậy \(MinB=-4\Leftrightarrow x=\dfrac{1}{5}\)

\(C=\left(7x\right)^2-2.7x.2+4-5\)

\(=\left(7x-2\right)^2-5\)

Thấy : \(\left(7x-2\right)^2\ge0\)

\(\Rightarrow C=\left(7x-2\right)^2-5\ge-5\)

Vậy \(MinC=-5\Leftrightarrow x=\dfrac{2}{7}\)

29 tháng 6 2021

\(1.\)

\(A=-x^2-10x+1=-\left(x^2+10x-1\right)\)

\(=-\left(x^2+2.5x+5^2-5^2-1\right)=-\left[\left(x+5\right)^2-26\right]\)

\(=-\left(x+5\right)^2+26\le26\) dấu "=" xảy ra<=>x=-5

\(B=-4x^2-6x-5=-4\left(x^2+\dfrac{6}{4}x+\dfrac{5}{4}\right)\)

\(=-4\left(x^2+2.\dfrac{3}{4}x+\dfrac{9}{16}+\dfrac{11}{16}\right)\)\(=-4\left[\left(x+\dfrac{3}{2}\right)^2+\dfrac{11}{6}\right]\le-\dfrac{11}{4}\)

\(C=-16x^2+8x-1=-16\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)\)

\(=-16\left(x^2-2.\dfrac{1}{4}x+\dfrac{1}{16}\right)=-16\left(x-\dfrac{1}{4}\right)^2\le0\)

dấu"=" xảy ra<=>x=1/4

 

 

 

19 tháng 10 2017

\(a,x^3+3x^2=4x+12\)

\(x^2\left(x+3\right)=4\left(x+3\right)\)

\(\Rightarrow\left(x+3\right)\left(x^2-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+3=0\\x^2-4=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-3\\x=\pm2\end{cases}}\)

\(b,49x^2=\left(3x+2\right)^2\)

\(7x=3x+2\)

\(\Rightarrow7x-3x=2\)

\(\Rightarrow4x=2\)

\(\Rightarrow x=\frac{1}{2}\)

các câu còn lại tương tự nha

19 tháng 10 2017

\(a,x^3+3x^2=4x+12\)

\(x^3+3x^2-4x-12=0\)

\(\Rightarrow x^2\left(x+3\right)-4\left(x+3\right)=0\)

\(\Rightarrow\left(x+3\right)\left(x^2-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+3=0\\\left(x+2\right)\left(x-2\right)=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-3\\x=\pm2\end{cases}}\)

\(b,49x^2=\left(3x+2\right)^2\)

\(\Rightarrow\left(7x\right)^2=\left(3x+2\right)^2\)

\(\Rightarrow7x=3x+2\)

\(\Rightarrow7x-3x=2\)

\(\Rightarrow4x=2\)

\(\Rightarrow x=\frac{1}{2}\)

\(c,3x^2\left(x-5\right)+12\left(5-x\right)=0\)

\(3x^2\left(x-5\right)-12\left(x-5\right)=0\)

\(\left(x-5\right)\left(3x^2-12\right)=0\)

\(\Rightarrow3.\left(x-5\right)\left(x^2-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-5=0\\x^2-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=\pm2\end{cases}}}\)

\(d,x^2\left(x-5\right)+45-9x=0\)

\(x^2\left(x-5\right)+9\left(5-x\right)=0\)

\(x^2\left(x-5\right)-9\left(x-5\right)=0\)

\(\left(x-5\right)\left(x^2-9\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-5=0\\x^2-9=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=5\\x=\pm3\end{cases}}\)

3 tháng 4 2023

\(A-B-C\)

\(=\left(3x^4-2x^3-x+1\right)-\left(-2x^3+4x^2+5x\right)-\left(-3x^4+2x^2+5\right)\)

\(=3x^4-2x^3-x+1+2x^3-4x^2-5x+3x^4-2x^2-5\)

\(=6x^4-6x^2-6x-4\)

a: \(=\dfrac{x-2x-1}{x+1}=\dfrac{-\left(x+1\right)}{x+1}=-1\)

b: \(=\dfrac{2+2x}{x\left(x+1\right)}=\dfrac{2\left(x+1\right)}{x\left(x+1\right)}=\dfrac{2}{x}\)

c: \(=\dfrac{3x-1}{2\left(3x+1\right)}+\dfrac{3x+1}{2\left(3x-1\right)}-\dfrac{6x}{\left(3x-1\right)\left(3x+1\right)}\)

\(=\dfrac{9x^2-6x+1+9x^2+6x+1-12x}{2\left(3x-1\right)\left(3x+1\right)}=\dfrac{18x^2-12x+2}{2\left(3x-1\right)\left(3x+1\right)}\)

\(=\dfrac{2\left(3x-1\right)^2}{2\left(3x-1\right)\left(3x+1\right)}=\dfrac{3x-1}{3x+1}\)