Tìm số nguyên x biết:
a) (x-1) (x3+8)=0
b) (x+1) ( 2x2-8)=0
c) (x2+3)(x+5)<0
Làm 1 câu bất kì cũng dc ạ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 12 - (2\(x^2\) - 3) = 7
2\(x^2\) - 3 = 12 - 7
2\(x^2\) - 3 = 5
2\(x^2\) = 8
\(x^2\) = 4
\(\left[{}\begin{matrix}x=-2\\x=2\end{matrix}\right.\)
Lời giải:
a. $22-(-x)=12$
$22+x=12$
$x=12-22=-10$
b. $x(x+2)=0$
$\Rightarrow x=0$ hoặc $x+2=0$
$\Rightarrow x=0$ hoặc $x=-2$
c. $(x+1)(x+9)=0$
$\Rightarrow x+1=0$ hoặc $x+9=0$
$\Rightarrow x=-1$ hoặc $x=-9$
d.
$x^2+3x=0$
$\Rightarrow x(x+3)=0$
$\Rightarrow x=0$ hoặc $x+3=0$
$\Rightarrow x=0$ hoặc $x=-3$
a) 22 - (-x) = 12
x = 12 - 22
x = -10
b) x.(x + 2) = 0
x = 0 hoặc x + 2 = 0
*) x + 2 = 0
x = 0 - 2
x = -2
Vậy x = -2; x = 0
c) (x + 1)(x + 9) = 0
x + 1 = 0 hoặc x + 9 = 0
*) x + 1 =.0
x = 0 - 1
x = -1
*) x + 9 = 0
x = 0 - 9
x = -9
Vậy x = -9; x = -1
d) x² + 3x = 0
x(x + 3) = 0
x = 0 hoặc x + 3 = 0
*) x + 3 = 0
x = 0 - 3
x = -3
Vậy x = -3; x = 0
a) (x - 2).3⁵ = 3⁷
x - 2 = 3⁷ : 3⁵
x - 2 = 3²
x - 2 = 9
x = 9 + 2
x = 11
b) x² - 2x = 0
x(x - 2) = 0
⇒ x = 0 hoặc x - 2 = 0
*) x - 2 = 0
x = 2
Vậy x = 0; x = 2
c) (2x - 1)² = 49
⇒ 2x - 1 = 7 hoặc 2x - 1 = -7
*) 2x - 1 = 7
2x = 7 + 1
2x = 8
x = 8 : 2
x = 4
*) 2x - 1 = -7
2x = -7 + 1
2x = -6
x = -6 : 2
x = -3
Vậy x = -3; x = 4
a) /x+2/ - x = 2
=> /x+2/ = 2+x
=> x = 0
b) /x-3/ + x-3 = 0
=> /x-3/ = 0 + x-3 = x- 3
=> x = 0
c) /x+1/ + /x+2/ = 1
<=> /2x/ + 3 = 1
<=> /2x/ = 1- 3 = - 2
=> không có x vì /2x/ ≥ 0
d) /x- 5/ + x - 8 = 6
/x- 5/ + x = 6+8 = 14
=> chịu, bài này mik ko làm dc
=> mí bài kia ko pix có đúng ko nữa
2/
a, |a+3|=7
Chia làm 2 trường hợp
TH1: TH2:
a+3=7 a+3=-7
a=7-3 a=-7-3
a=4 a=-11
b,|a-5|=(-5)+8
|a-5|=3
Chia làm 2 truờng hợp
TH1: TH2:
a-5=3 a-5=-3
a=3+5 a=-3+5
a=8 a=2
1/
a, Cộng 2 vế với y ta được :
x-y+y > 0+y
=> x > y
b, Trừ 2 vê với y ta được :
x-y > y-y
=> x-y >0
2/
a, => a+3=-7 hoặc a+3=7
=> a=-10 hoặc a=4
b, => |a-5| = 3
=> a-5=-3 hoặc a-5=3
=> a=2 hoặc a=8
Tk mk nha
Bài 1
a/ \(x\left(x^2+1\right)+2\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2+1\right)=0\Rightarrow x=-2\)
b/
\(\Leftrightarrow x^3-6x^2+9x+5x^2-30x+45=0\)
\(\Leftrightarrow x\left(x-3\right)^2+5\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-3\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=3\end{matrix}\right.\)
1.
c/ \(\Leftrightarrow x^3+2x^2+2x+x^2+2x+2=0\)
\(\Leftrightarrow x\left(x^2+2x+2\right)+x^2+2x+2=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+2x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x^2+2x+2=0\left(vn\right)\end{matrix}\right.\)
d/
\(\Leftrightarrow x^4+x^3-2x^2-x^3-x^2+2x+4x^2+4x-8=0\)
\(\Leftrightarrow x^2\left(x^2+x-2\right)-x\left(x^2+x-2\right)+4\left(x^2+x-2\right)=0\)
\(\Leftrightarrow\left(x^2-x+4\right)\left(x^2+x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-x+4=0\left(vn\right)\\x^2+x-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
a) \(\left(x-1\right)\left(x^3+8\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-1=0\\x^3+8=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x^3=-8\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
b) \(\left(x+1\right)\left(2x^2-8\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+1=0\\2x^2-8=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-1\\x^2=4\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-1\\x=\pm2\end{matrix}\right.\)