Cho tam giác ABC có AB = AC. Chứng minh rằng: góc B = góc C
(Không dùng tính chất tam giác cân)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABE và ΔADE có
AB=AD
\(\widehat{BAE}=\widehat{DAE}\)
AE chung
Do đó: ΔABE=ΔADE
b: Ta có: ΔABE=ΔADE
nên EB=ED
hay ΔEBD cân tại E
a: ΔABC cân tại A
=>\(\widehat{ABC}=\widehat{ACB}\)
mà \(\widehat{ABC}=74^0\)
nên \(\widehat{ACB}=74^0\)
Ta có: ΔABC cân tại A
=>\(\widehat{BAC}=180^0-2\cdot\widehat{ABC}\)
=>\(\widehat{BAC}=180^0-2\cdot74^0=32^0\)
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{BAH}\) chung
Do đó: ΔAHB=ΔAKC
=>AH=AK
=>ΔAHK cân tại A
c: Ta có: ΔAHB vuông tại H
=>\(AH^2+BH^2=AB^2\)
=>\(AH^2=10^2-6^2=64\)
=>\(AH=\sqrt{64}=8\left(cm\right)\)
=>AK=8(cm)
d: Xét ΔAKO vuông tại K và ΔAHO vuông tại H có
AO chung
AH=AK
Do đó: ΔAKO=ΔAHO
=>\(\widehat{KAO}=\widehat{HAO}\)
=>\(\widehat{BAO}=\widehat{CAO}\)
=>AO là phân giác của góc BAC
A B C M 4cm H K
a)Ta có: tam giác ABC là tam giác cân
\(=>AB=AC\)
Mà \(AB=4cm\)
=>>AC=4cm
b) Nếu góc B=60 độ =>tgiác ABC là tam giác đèu(t/c)
c) Xét tam giác ABM và tgiác ACM có
AB=AC(cmt)
AM: chung
==>>tgiác ABM=tgiác ACM( ch-cgv)
d) Ta có: tam giác ABM=tgiác ACM(cmt)
=>\(\widehat{AMC}=\widehat{AMB}\)(2 góc tương ứng)
Mà: \(\widehat{AMC+}\widehat{AMC}=180^0\)
\(=>\widehat{AMC=}\widehat{AMB}=\frac{180^0}{2}=90^0\)
=> AMvuông góc vs BC
e) Xét tgiác BMH và tgiác CMK có :
BM=CM( 2 cạnh tương ứng , cmt(a))
\(\widehat{B}=\widehat{C}\)( tgiác ABC là tgiác đều)
==>>>tgiác BMH=tgiác CMK(ch-gn)
=>MH=MK( 2 cạnh tương ứng)
KẺ AH vuông góc với AB
Xét tam giác ABH vuông tại H và TAm giacs ACH vuông tại H có :
AB = AC ( GT )
AH chung
=> Tam giác ABH = ACH ( c.h - c.g.v)
=> ABH = ACH ( 2 .g . t .ư)
HAy ABC = ACB => B = C