1.Cho n E N*,a EN*,an chia hết cho 5
C/m a2 + 150 chia hết cho 25
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 :
Vì \(p\) là số nguyên tố \(>3\Leftrightarrow\left[{}\begin{matrix}p=3k+1\\p=3k_1+2\end{matrix}\right.\) \(\left(k;k_1\in N\right)\)
+) \(p=3k+1\Leftrightarrow p+8=3k+9⋮3\) (hợp số) \(\rightarrow loại\) (do \(p+8\) là số nguyên tố)
+) \(p=3k_1+2\Leftrightarrow p+8=3k_1+10:3\) (dư 1) \(\rightarrow tm\)
\(\Leftrightarrow p+100=3k+102⋮3\) (hợp số) \(\rightarrow tm\)
Vậy \(p+100\) là hợp số
Bài 1:
Ta có: an chia hết cho 5
=> a2 chia hết cho 5
=> a2 chia hết cho 25
mà 150 chia hết cho 25
=> a2 + 150 chia hết cho 25
1:
#include <bits/stdc++.h>
using namespace std;
long long n,i,x;
int main()
{
cin>>n;
long long t=0;
for (i=1; i<=n; i++)
{
cin>>x;
t=t+x;
}
cout<<t;
return 0;
}
\(a)n+7⋮n+2\)
\(\Rightarrow n+2+5⋮n+2\)
Mà n + 2 chia hết cho n + 2 => \(5⋮n+2\)=> n + 2 thuộc Ư\((5)\)\(=\left\{\pm1;\pm5\right\}\)
Lập bảng :
n + 2 | 1 | -1 | 5 | -5 |
n | -1 | -3 | 3 | -7 |
Vậy : ...
Ta có : an chia hết cho 5 nên a chia hết cho 5
=> a2 chia hết cho 5
Do a2 chia hết cho 5 và 150 cũng chia hết cho 5
nên a2+150 chia hết cho 5
Vậy a2+150 chia hết cho 5
tick nha
a) Thay m = -1 và n = 2 ta có:
3m - 2n = 3(-1) -2.2 = -3 - 4 = -7
b) Thay m = -1 và n = 2 ta được
7m + 2n - 6 = 7.(-1) + 2.2 - 6 = -7 + 4 - 6 = -9.