Tính 1-4+7-10+13-......+2023
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a, Dãy số trên có số số hạng là:
$(100-1):3+1=34$(số hạng)
Tổng dãy số trên là:
$(100+1)\times34:2=1717$
b, Dãy số trên có số số hạng là:
$(2023-3):5+1=405$(số hạng)
Tổng dãy số trên là:
$(2023+3)\times405:2=410265$
c, Dãy số trên có số số hạng là:
$(2002-2):4+1=501$(số hạng)
Tổng dãy số trên là:
$(2002+2)\times501:2=502002$
Bài 2 tính
a) Dãy trên có số số hạng là:
( 100 - 1 ) : 3 + 1 = 34
Tổng của dãy trên là:
( 100 + 1 ) x 34 : 2 = 1717
Đáp số: 1717
b) Dãy trên có số số hạng là:
( 2023 - 3 ) : 5 + 1 = 405
Tổng của dãy trên là:
( 2023 + 3 ) x 405 : 2 = 410265
c) Dãy trên có số số hạng là:
( 2002 - 2 ) : 4 + 1 = 501
Tổng của dãy trên là:
( 2002 + 2 ) x 501 : 2 = 502002

Số các số hạng trong S là: (2023-4):3+1=674 (số)
Tổng S bằng: (2023+4).674:2=683099
Vậy S=683099
Số số hạng là (2023-4):3+1=674(số)
Tổng là (2023+4)*674/2=683099

\(A=4+7+10+13+...+2017+2020+2023\)
Số các số hạng của A là:
\((2023-4):3+1=674(số)\)
Tổng A bằng:
\((2023+4)\cdot674:2=683099\)
Vậy \(A=683099\).
\(4+7+10+13+16+...+2023\)
Số phần tử trong dãy: \(\dfrac{2023-4}{3}+1=674\)
Tổng của dãy trên: \((2023+4)\cdot674:2=683099\)

A = 1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 + 9 - 10 - 11 + ... - 2023 + 2024 + 2025
Xét dãy số: 1; 2; 3; 4;..; 2025 là dãy số cách đều với khoảng cách là:
2 - 1 = 1
Số số hạng của dãy số trên là: ( 2025 - 1) : 1 + 1 = 2025
Vì 2025 : 4 = 506 dư 1
Nhóm 4 số hạng liên tiếp của A vào nhau thì được A là tổng của 506 nhóm và 2025 khi đó
A =(1-2-3+4)+(5 - 6 - 7 + 8) +...+(2021-2022-2023+2024) + 2025
A = 0 + 0 +...+ 0 + 2025
A = 2025

2022/2023 . (9/13 - 7/11) + 2022/2023 . (17/13- 4/17)
= 2022/2023 . 190/43 + 2022/2023 . 237/221
= 2022/2023 . (190/43 + 237/221)
= 2022/2023 . 52181/9503
= 105509982/19224569
Sửa: \(\dfrac{2022}{2023}\cdot\left(\dfrac{9}{13}-\dfrac{7}{11}\right)+\dfrac{2022}{2023}\cdot\left(\dfrac{17}{13}-\dfrac{4}{11}\right)\)
\(=\dfrac{2022}{2023}\cdot\left(\dfrac{9}{13}-\dfrac{7}{11}+\dfrac{17}{13}-\dfrac{4}{11}\right)\)
\(=\dfrac{2022}{2023}\cdot\left(2-1\right)\)
\(=\dfrac{2022}{2023}\cdot1\)
\(=\dfrac{2022}{2023}\)

1:
a: =23/27-11/17+4/27+28/17
=23/27+4/27+28/17-11/17
=1+1=2
b: \(=\dfrac{2}{3}\cdot\left(\dfrac{7}{9}+\dfrac{2}{9}\right)-\dfrac{2}{9}\)
=2/3-2/9
=6/9-2/9
=4/9
c: \(=\dfrac{11}{5}\cdot\dfrac{7}{3}-\dfrac{1}{3}\cdot\dfrac{11}{5}\)
=11/5(7/3-1/3)
=11/5*2
=22/5
d: \(=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{2024}{2023}=\dfrac{2024}{2}=1012\)
e: \(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{2022}{2023}=\dfrac{1}{2023}\)

Lời giải:
$A=(-1-2+3+4)+(-5-6+7+8)+(-9-10+11+12)+...+(-2021-2022+2023+2024)-2024$
$=\underbrace{4+4+...+4}_{506}-2024$
$=4.506-2024=0$

a) A=6 -13 +(-14+15+16-17)+(-18+19+20-21)+...+(-2018+2019+2020-2021)+(-2022+2023+2024-2025) +2025
A=-7 +0 +0 +...+0+0 +2025= 2018
B) 7-9+(-10+11+12-13)+(-14+15+16-17)+...+(-2018+2019+2020-2021)+2021
B= -2+0+0+...+0+2021=2019
#Có gì không hiểu thì hỏi nha#

a: =-3/4-1/4+2/7+5/7+2023/2024
=-1+1+2023/2024=2023/2024
b: 2/3x=2/7
=>x=2/7:2/3=3/7
c; =>2/3x=1/10+1/2=1/10+5/10=6/10=3/5
=>x=3/5:2/3=3/5*3/2=9/10
Lời giải:
$1-4+7-10+13-...+2023$
$=(1-4)+(7-10)+(13-16)+...+(2017-2020)+2023$
$=(-3)+(-3)+...+(-3)+2023$
Số lần xuất hiện của $-3$ là: $[(2020-1):3+1]:2=337$
Giá trị biểu thức là: $(-3).337+2023=1012$
1 - 4 + 7 - 10 + 13 - ...... + 2023 [ Có : (2023 - 1) : 3 + 1 = 675 số hạng]
= (1 - 4) + (7 - 10) + (13 - 16) +...... + (2017 - 2020) + 2023
= (-3) + (-3) + (-3) +...... + (-3) + 2023 [ Có : (675 - 1) : 2 = 337 số số -3 ]
= -3 . 337 + 2023 = -1011 + 2023 = 2023 - 1011 = 1012