cho đường tròn (o) đường kính AB=2R. I trung điểm OA. Vẽ qua I dây CD\(⊥AB\), BC cắt DA tại E. Hạ EH\(⊥AB\)
a) cm tứ giác AHEC nội tiếp
b) ACOD HÌNH THOI
C) HC là tiếp tuyến của đường tròn O
D) Tính BC.BE theo R
Mình đng cần gấp xin mn giúp đỡ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xet tam giac COA can tai O( OA= OC) co CI vua la duong cao vua la trung tuyen ung voi AO nen tam giac OAC deu. Suy ra goc COA bang 60do , suy ra so do cung CA bang 60do. Suy ra goc COB bang 180-60=120 suy ra so do cung CA bang 120. Co: HCA=1/2sd cungCA=60/2=30 (1)
Co goc CHB=1/2(sd cungCB- sd cungCA) =1/2(120-60)=1/2*60=30 (2)
Tu (1); (2) suy ra: tam giac ACH can tai A. Suy ra AC= AH (3)
Lai co: tam giac CAO deu nen CA= CO (4)
Tu (3);(4)suy ra CA=CO=AH⏩ tam giac CHO vuong tai C
➡CO vuong goc voi HC tai C
Vay HC la tiep tuyen
b). Tu giac ACOD la hinh thoi
Tu giac co 4 canh ( CA= CO=OD=DA) bang nhau
c).
Bài 2:
ΔOBC cân tại O
mà OK là trung tuyến
nên OK vuông góc BC
Xét tứ giác CIOK có
góc CIO+góc CKO=180 độ
=>CIOK là tứ giác nội tiếp
Bài 3:
Xét tứ giác EAOM có
góc EAO+góc EMO=180 độ
=>EAOM làtứ giác nội tiếp
d, Vi ED la tiep tuyen (chung minh tren) => tam giac EDF vuong tai D
co \(\widehat{CDE}=\frac{1}{2}sd\widebat{DC}=\frac{1}{2}\widehat{COD}=\frac{1}{2}.120=60^o\)
ma \(\widehat{CED}+\widehat{COD}=180^o\Rightarrow\widehat{CED}=180-120=60^o\)
suy ra \(\Delta CED\) deu => EC=CD (1)
mat khac cung co \(\widehat{CFD}=\widehat{CDF}\) (phu hai goc bang nhau)
=> tam giac CDF can tai C
suy ra CD=CF (2)
tu (1),(2) suy ra dpcm
a:Xét tứ giác AFDC có
góc AFC=góc ADC=90 độ
Do đó: AFDC là tứ giác nội tiếp
b: Gọi AG là đường kính của (O)
Xét (O) có
ΔACG nội tiếp
AG là đường kính
Do đo: ΔACG vuông tại C
Xét ΔACG vuông tại C và ΔADB vuông tại D có
góc AGC=góc ABD
Do đó: ΔACG đồng dạng với ΔADB
=>AC/AD=AG/AB
=>AB*AC=AG*AD
a: ΔODE cân tại O có OI là trung tuyến
nên OI vuông góc DE
góc OIA=góc OBA=90 độ
=>OIBA nội tiếp
b: Xét (O) có
AC,AB là tiếp tuyến
=>AC=AB
mà OB=OC
nên OA là trung trực của BC
=>BC vuông góc OA tại H
=>AH*AO=AB^2
Xét ΔABE và ΔADB có
góc ABE=góc ADB
góc BAE chung
=>ΔABE đồng dạng với ΔADB
=>AB/AD=AE/AB
=>AB^2=AD*AE=AH*AO