K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2016

Gọi 7 số hữu tỉ đã cho lần lượt là:  a1;  a2;  a3;  a4;  a5;  a6;  a7

Theo bài ra, ta có: a1.a2 = a2.a3 = a3.a4 = a4.a5 = a5.a= a6.a= a7.a1

\(\Rightarrow\)a =  a2  =  a3  =  a4  =  a5  =  a6  =  a7

Nên   a1.a2 = a2.a3 = a3.a4 = a4.a5 = a5.a= a6.a= a7.a\(\frac{9}{25}\)

mà     \(\frac{9}{25}=\left(-\frac{3}{5}\right)^2\)   hoặc     \(\frac{9}{25}=\left(\frac{3}{5}\right)^2\)

\(\Rightarrow\)a =  a2  =  a3  =  a4  =  a5  =  a6  =  a7  =  \(-\frac{3}{5}\)hoặc   a =  a2  =  a3  =  a4  =  a5  =  a6  =  a7  =  \(\frac{3}{5}\)

Vậy 7 số hữu tỉ cần tìm bằng nhau và bằng \(\frac{3}{5}\)hoặc \(-\frac{3}{5}\)

7 tháng 12 2015

Gọi 11 số hữu tỉ đó lần lượt là \(a_1,a_2,a_3...a_{11}\)

\(\Rightarrow a_1\cdot a_2=9\)và \(a_2\cdot a_3=9\)(theo giả thiết) \(\Rightarrow a_1=a_3\)

Tương tự \(\Rightarrow a_1=a_3=a_5=a_7=a_9=a_{11}=m\) và \(a_2=a_4=a_6=a_8=a_{10}=n\)

=> trên vòng tròn chỉ có hai số m và n xen kẽ thỏa mãn m, n là số hữu tỉ và \(m\cdot n=9\)

=> tổng 11 số đó là \(6\cdot m+5\cdot n\)với mọi m, n thỏa mãn m, n là số hữu tỉ và \(m\cdot n=9\)

 

24 tháng 7 2016

Các số đó đều là 3

24 tháng 7 2016

bạn có thể cho mk lời giải ko