cho tam giác ABC vuông tại A, đường cao AH. Biết AB =7 cm, AH =6 cm. Tính
a) AB, BC
b) cos B, cos C
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(AB^2=AH.BC\Rightarrow BC=\frac{AB^2}{AH}=\frac{7,5^2}{6}=9,375\)
áp dụng định lí Pytago tính được AC = 5,625
tính cosB và cos C thì quá dễ rồi. bạn làm tiếp nhé
ΔAHB vuông tại H có HD là đường cao
nên AD*AB=AH^2
ΔAHC vuông tại H có HE là đườg cao
nên AE*AC=AH^2
=>AD*AB=AE*AC
=>AD/AC=AE/AB
Xét ΔABC vuông tại A có tan B=AC/AB=căn 3
=>góc B=60 độ
=>góc C=30 độ
BC=căn AB^2+AC^2=8(cm)
\(S_{ABC}=\dfrac{1}{2}\cdot4\cdot4\sqrt{3}=8\sqrt{3}\left(cm^2\right)\)
\(AH=AB\cdot\dfrac{AC}{BC}=\dfrac{4\cdot4\sqrt{3}}{8}=2\sqrt{3}\left(cm\right)\)
Xét ΔADE và ΔACB có
AD/AC=AE/AB
góc DAE chung
=>ΔADE đồng dạng với ΔACB
=>S ADE/S ACB=(AD/AC)^2
\(=\left(\dfrac{AH^2}{AB}:AC\right)^2=\left(\dfrac{AH^2}{AB\cdot AC}\right)^2=\left(\dfrac{12}{4\cdot4\sqrt{3}}\right)^2=\dfrac{3}{16}\)
\(\left(1-cos^2B\right)\cdot sin^2C=sin^2B\cdot sin^2C\)
\(=\left(sinB\cdot sinC\right)^2=\left(\dfrac{AB}{BC}\cdot\dfrac{AC}{BC}\right)^2=\left(\dfrac{4}{8}\cdot\dfrac{4\sqrt{3}}{8}\right)^2=\dfrac{3}{16}\)
=>\(S_{ADE}=S_{ABC}\cdot\left(1-cos^2B\right)\cdot sin^2C\)
Bài 1:
\(BC=CD+BD=68+51=119\)
\(AD\)là phân giác \(\widehat{BAC}\)\(\Rightarrow\)\(\frac{BD}{AB}=\frac{DC}{AC}\)hay \(\frac{51}{AB}=\frac{68}{AC}\)
\(\Leftrightarrow\)\(\frac{51^2}{AB^2}=\frac{68^2}{AC^2}=\frac{51^2+68^2}{AB^2+AC^2}=\frac{25}{49}\)
suy ra: \(\frac{51^2}{AB^2}=\frac{25}{49}\)\(\Rightarrow\)\(AB=71,4\)
ÁP dụng hệ thức lượng ta có:
\(AB^2=BH.BC\)
\(\Leftrightarrow\)\(BH=\frac{AB^2}{BC}=\frac{71,4^2}{119}=42,84\)
\(\Rightarrow\)\(CH=BC-BH=119-42,84=76,16\)
Bài 2:
Áp dụng Pytago ta có:
\(AH^2+BH^2=AB^2\)
\(\Leftrightarrow\)\(BH^2=AB^2-AH^2\)
\(\Leftrightarrow\)\(BH^2=7,5^2-6^2=20,25\)
\(\Leftrightarrow\)\(BH=4,5\)
Áp dụng hệ thức lượng ta có:
\(AB^2=BH.BC\)
\(\Rightarrow\)\(BC=\frac{AB^2}{BH}=\frac{7,5^2}{4,5}=12,5\)
\(AB.AC=BC.AH\)
\(\Rightarrow\)\(AC=\frac{BC.AH}{AB}=\frac{12,5.6}{7,5}=10\)
b) \(cosB=\frac{AC}{BC}=\frac{10}{12,5}=0.8\)
\(cosC=\frac{AB}{BC}=\frac{7,5}{12,5}=0,6\)
Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=BC^2-AB^2=10^2-6^2=64\)
=>\(AC=\sqrt{64}=8\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=BA^2\)
=>\(BH\cdot10=6^2=36\)
=>BH=36/10=3,6
Xét ΔABC vuông tại A có \(cosB=\dfrac{BA}{BC}\)
=>\(cosB=\dfrac{6}{10}=\dfrac{3}{5}\)
1)
a) trong tam giac ABC vuong tai A co
+)BC2=AB2+AC2
suy ra AC=12cm
+)AH.BC=AB.AC
suy ra AH=7,2cm
b) Trong tu giac AMHN co HMA=HNA=BAC=90 do suy ra AMHN la hcn suy ra AH=MN=7,2cm
suy ra MN=7,2cm
c) goi O la giao diem cu MN va AH
Vi AMHN la hcn (cmt) nen OA=OH=7,2/2=3,6cm
suy ra SBMCN=1/2[OH*(MN+BC)]=39,96cm2
d) Vi AMHN la hcn nen goc AMN=goc HAB
Trong tam giac ABC vuong tai A co AK la dg trung tuyen ung voi canh huyen BC nen AK=BK=KC
suy ra tam giac AKB can tai K
suy ra goc B= goc BAK
Ta co goc B+ goc BAH=90 do
tuong duong BAK+AMN=90 do suy ra AK vuong goc voi MN (dmcm)
Tính AB bằng hệ thức đường cao trong tam giác vuông. 1/h^2=1/a^2+ 1/b^2 .
Tính BC dùng pytago. sau khi tìm AB
Tính cos B = AB/BC, cosC = AC/BC
tính k ra ạ