K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2017

a) \(x^2-8y^2+6x+9\)

\(=\left(x^2+6x+9\right)-8y^2\)

\(=\left(x+3\right)^2-\left(\sqrt{8}\cdot y\right)^2\)

\(=\left(x+3+\sqrt{8}y\right)\left(x+3-\sqrt{8}y\right)\)

20 tháng 10 2021

a) \(x^5+4x+5=\left(x^5+x^4\right)-\left(x^4+x^3\right)+\left(x^3+x^2\right)-\left(x^2+x\right)+\left(5x+5\right)=x^4\left(x+1\right)-x^3\left(x+1\right)+x^2\left(x+1\right)-x\left(x+1\right)+5\left(x+1\right)=\left(x^4-x^3+x^2-x+5\right)\left(x+1\right)\)

b) \(x^4+6x^3+11x^2+6x+1=\left(x^4+3x^3+x^2\right)+\left(3x^3+9x^2+3x\right)+\left(x^2+3x+1\right)=x^2\left(x^2+3x+1\right)+3x\left(x^2+3x+1\right)+\left(x^2+3x+1\right)=\left(x^2+3x+1\right)^2\)

c) \(64x^4+1=\left[\left(8x^2\right)^2+16x^2+1\right]-16x^2=\left(8x^2+1\right)^2-\left(4x\right)^2=\left(8x^2-4x+1\right)\left(8x^2+4x+1\right)\)d) \(81x^4+4=\left[\left(9x^2\right)^2+36x^2+2^2\right]-36x^2=\left(9x^2+2\right)^2-\left(6x\right)^2=\left(9x^2-6x+2\right)\left(9x^2+6x+2\right)\)

 

20 tháng 10 2021

làm giúp em mấy câu sau với

26 tháng 12 2022

\(B1\\ a,2x+10y=2\left(x+5y\right)\\ b,x^2+4x+4=x^2+2.2x+2^2=\left(x+2\right)^2\\ c,x^2-y^2+10y-25\\ =\left(x^2-y^2\right)+5\left(2y-5\right)\\ =\left(x-y\right)\left(x+y\right)+5\left(2y-5\right)\\ B2\)

\(a,x^2-3x+x-3=0\\ =>x\left(x-3\right)+\left(x-3\right)=0\\ =>\left(x+1\right)\left(x-3\right)=0\\ =>\left[{}\begin{matrix}x+1=0\\x-3=0\end{matrix}\right.=>\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\\ b,2x\left(x-3\right)-\dfrac{1}{2}\left(4x^2-3\right)=0\\ =>2x^2-6x-2x^2+\dfrac{3}{2}=0\\ =>-6x=-\dfrac{3}{2}\\ =>x=\left(-\dfrac{3}{2}\right):\left(-6\right)\\ =>x=\dfrac{1}{4}\\ c,x^2-\left(x-3\right)\left(2x-5\right)=9\\ =>x^2-2x^2+6x+5x-15=9\\ =>-x^2+11-15-9=0\\ =>-x^2+11x-24=0\\ =>-x^2+8x+3x-24=0\\ =>-x\left(x-8\right)+3\left(x-8\right)=0\\ =>\left(3-x\right)\left(x-8\right)=0\\ =>\left[{}\begin{matrix}3-x=0\\x-8=0\end{matrix}\right.=>\left[{}\begin{matrix}x=3\\x=8\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
18 tháng 12 2023

Bài 1:

a. $2x^3+3x^2-2x=2x(x^2+3x-2)=2x[(x^2-2x)+(x-2)]$

$=2x[x(x-2)+(x-2)]=2x(x-2)(x+1)$

b.

$(x+1)(x+2)(x+3)(x+4)-24$

$=[(x+1)(x+4)][(x+2)(x+3)]-24$

$=(x^2+5x+4)(x^2+5x+6)-24$

$=a(a+2)-24$ (đặt $x^2+5x+4=a$)

$=a^2+2a-24=(a^2-4a)+(6a-24)$

$=a(a-4)+6(a-4)=(a-4)(a+6)=(x^2+5x)(x^2+5x+10)$

$=x(x+5)(x^2+5x+10)$

AH
Akai Haruma
Giáo viên
18 tháng 12 2023

Bài 2:

a. ĐKXĐ: $x\neq 3; 4$

\(A=\frac{2x+1-(x+3)(x-3)+(2x-1)(x-4)}{(x-3)(x-4)}\\ =\frac{2x+1-(x^2-9)+(2x^2-9x+4)}{(x-3)(x-4)}\\ =\frac{x^2-7x+14}{(x-3)(x-4)}\)

b. $x^2+20=9x$

$\Leftrightarrow x^2-9x+20=0$

$\Leftrightarrow (x-4)(x-5)=0$

$\Rightarrow x=5$ (do $x\neq 4$)

Khi đó: $A=\frac{5^2-7.5+14}{(5-4)(5-3)}=2$

2 tháng 11 2017

\(P\left(x\right)=\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4\)

\(=\left[\left(4x+1\right)\left(3x+2\right)\right].\left[\left(12x-1\right)\left(x+1\right)\right]-4\)

\(=\left(12x^2+8x+3x+2\right).\left(12x^2+12x-x-1\right)-4\)

\(=\left(12x^2+11x+2\right).\left(12x^2+11x-1\right)-4\)

Đặt \(12x^2+11x=t\), ta có:

\(\left(t+2\right)\left(t-1\right)-4\)

\(=t^2-t+2t-2-4=t^2+t-6\)

\(=t^2-2t+3t-6\)

\(=t\left(t-2\right)+3\left(t-2\right)=\left(t-2\right)\left(t+3\right)\)

Thay \(t=12x^2+11x\), ta được:

\(P\left(x\right)=\left(12x^2+11x-2\right)\left(12x^2+11x+3\right)\)

Đs...

10 tháng 11 2023

a: \(P=-3x^3+5x\)

\(=x\cdot\left(-3x^2\right)+x\cdot5\)

\(=x\left(-3x^2+5\right)\)

b: \(Q=\left(2x-1\right)+\left(x-2\right)\left(2x-1\right)\)

\(=\left(2x-1\right)\left(1+x-2\right)\)

\(=\left(2x-1\right)\left(x-1\right)\)

c: \(R=4-16x^2\)

\(=4\cdot1-4\cdot4x^2\)

\(=4\left(1-4x^2\right)\)

\(=4\left(1-2x\right)\left(1+2x\right)\)

d: \(S=36-4x^2\)

\(=4\cdot9-4\cdot x^2\)

\(=4\left(9-x^2\right)\)

\(=4\left(3-x\right)\left(3+x\right)\)

e: \(T=8x^3-1\)

\(=\left(2x\right)^3-1^3\)

\(=\left(2x-1\right)\left(4x^2+2x+1\right)\)

f: \(Q=8-x^3\)

\(=2^3-x^3\)

\(=\left(2-x\right)\left(4+2x+x^2\right)\)

g: \(N=64-x^3\)

\(=4^3-x^3\)

\(=\left(4-x\right)\left(16+4x+x^2\right)\)

27 tháng 10 2018

Đặt \(A=\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(A=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

Đặt \(x^2+7x+10=y\)

\(\Rightarrow\)\(A=y.\left(y+2\right)-24\)

\(A=y^2+2y+1-25\)

\(A=\left(y+1\right)^2-5^2\)

\(A=\left(y+1-5\right)\left(y+1+5\right)\)

\(A=\left(y-4\right)\left(y+6\right)\)

\(\Rightarrow A=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

\(A=\left[\left(x^2+x\right)+\left(6x+6\right)\right].\left(x^2+7x+16\right)\)

\(A=\left[x.\left(x+1\right)+6.\left(x+1\right)\right].\left(x^2+7x+16\right)\)

\(A=\left(x+1\right).\left(x+6\right).\left(x^2+7x+16\right)\)

27 tháng 10 2018

Đặt \(B=\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4\)

\(B=\left(12x^2+11x+2\right)\left(12x^2+11x-1\right)-4\)

Đặt \(12x^2+11x-1=a\)

\(\Rightarrow B=a.\left(a+3\right)-4\)

\(B=a^2+3a-4\)

\(B=\left(a^2-a\right)+\left(4a-4\right)\)

\(B=a.\left(a-1\right)+4.\left(a-1\right)\)

\(B=\left(a-1\right)\left(a+4\right)\)

\(\Rightarrow B=\left(12x^2+11x-2\right)\left(12x^2+11x+3\right)\)

22 tháng 12 2023

Bài 2:

1: \(\left(2x-1\right)^2-4\left(2x-1\right)=0\)

=>\(\left(2x-1\right)\left(2x-1-4\right)=0\)

=>(2x-1)(2x-5)=0

=>\(\left[{}\begin{matrix}2x-1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)

2: \(9x^3-x=0\)

=>\(x\left(9x^2-1\right)=0\)

=>x(3x-1)(3x+1)=0

=>\(\left[{}\begin{matrix}x=0\\3x-1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)

3: \(\left(3-2x\right)^2-2\left(2x-3\right)=0\)

=>\(\left(2x-3\right)^2-2\left(2x-3\right)=0\)

=>(2x-3)(2x-3-2)=0

=>(2x-3)(2x-5)=0

=>\(\left[{}\begin{matrix}2x-3=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)

4: \(\left(2x-5\right)\left(x+5\right)-10x+25=0\)

=>\(2x^2+10x-5x-25-10x+25=0\)

=>\(2x^2-5x=0\)

=>\(x\left(2x-5\right)=0\)

=>\(\left[{}\begin{matrix}x=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5}{2}\end{matrix}\right.\)

Bài 1:

1: \(3x^3y^2-6xy\)

\(=3xy\cdot x^2y-3xy\cdot2\)

\(=3xy\left(x^2y-2\right)\)

2: \(\left(x-2y\right)\left(x+3y\right)-2\left(x-2y\right)\)

\(=\left(x-2y\right)\cdot\left(x+3y\right)-2\cdot\left(x-2y\right)\)

\(=\left(x-2y\right)\left(x+3y-2\right)\)

3: \(\left(3x-1\right)\left(x-2y\right)-5x\left(2y-x\right)\)

\(=\left(3x-1\right)\left(x-2y\right)+5x\left(x-2y\right)\)

\(=(x-2y)(3x-1+5x)\)

\(=\left(x-2y\right)\left(8x-1\right)\)

4: \(x^2-y^2-6y-9\)

\(=x^2-\left(y^2+6y+9\right)\)

\(=x^2-\left(y+3\right)^2\)

\(=\left(x-y-3\right)\left(x+y+3\right)\)

5: \(\left(3x-y\right)^2-4y^2\)

\(=\left(3x-y\right)^2-\left(2y\right)^2\)

\(=\left(3x-y-2y\right)\left(3x-y+2y\right)\)

\(=\left(3x-3y\right)\left(3x+y\right)\)

\(=3\left(x-y\right)\left(3x+y\right)\)

6: \(4x^2-9y^2-4x+1\)

\(=\left(4x^2-4x+1\right)-9y^2\)

\(=\left(2x-1\right)^2-\left(3y\right)^2\)

\(=\left(2x-1-3y\right)\left(2x-1+3y\right)\)

8: \(x^2y-xy^2-2x+2y\)

\(=xy\left(x-y\right)-2\left(x-y\right)\)

\(=\left(x-y\right)\left(xy-2\right)\)

9: \(x^2-y^2-2x+2y\)

\(=\left(x^2-y^2\right)-\left(2x-2y\right)\)

\(=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y-2\right)\)

26 tháng 8 2015

=(4x+1)(3x+2)(12x-1)(x+1)-4

=(12x2+11x+2)(12x2+11x-1)-4

đặt a=12x2+11x+2

khi đó đa thức trở thành:

a(a-3)-4

=a2-3a-4

=a2+a-4a-4

=a(a+1)-4(a+1)

=(a+1)(a-4)

thay x vào là ok

15 tháng 9 2021

\(A=4x^2+6x=2x\left(2x+3\right)\)

\(B=\left(2x+3\right)^2-x\left(2x+3\right)=\left(2x+3\right)\left(2x+3-x\right)=\left(2x+3\right)\left(x+3\right)\)

\(C=\left(9x^2-1\right)-\left(3x-1\right)^2=\left(3x-1\right)\left(3x+1\right)-\left(3x-1\right)^2=\left(3x-1\right)\left(3x+1-3x+1\right)=2\left(3x+1\right)\)

\(D=x^3-16x=x\left(x^2-16\right)=x\left(x-4\right)\left(x+4\right)\)

\(E=4x^2-25y^2=\left(2x-5y\right)\left(2x+5y\right)\)

\(G=\left(2x+3\right)^2-\left(2x-3\right)^2=\left(2x+3-2x+3\right)\left(2x+3+3x-3\right)=6.4x=24x\)

15 tháng 9 2021

\(A=2x\left(2x+3\right)\\ B=\left(2x+3\right)\left(2x+3-x\right)=\left(2x+3\right)\left(x+3\right)\\ C=\left(3x-1\right)\left(3x+1\right)-\left(3x-1\right)^2\\ =\left(3x-1\right)\left(3x+1-3x+1\right)\\ =2\left(3x-1\right)\\ D=x\left(x^2-16\right)=x\left(x-4\right)\left(x+4\right)\\ E=\left(2x-5y\right)\left(2x+5y\right)\\ G=\left(2x+3-2x+3\right)\left(2x+3+2x-3\right)\\ =24x\)