K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2016

Hệ đã cho tương đương với : 

\(\hept{\begin{cases}xy+x+y+1=4\\yz+y+z+1=9\\xz+x+z+1=16\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)\left(y+1\right)=4\\\left(y+1\right)\left(z+1\right)=9\\\left(z+1\right)\left(x+1\right)=16\end{cases}}\)

Nhân các phương trình theo vế : \(\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2=24^2\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+1\right)\left(y+1\right)\left(z+1\right)=24\\\left(x+1\right)\left(y+1\right)\left(z+1\right)=-24\end{cases}}\)

Từ đây thay vào từng phương trinh trên để tìm x,y,z , rồi từ đó suy ra P

7 tháng 1 2017

Cộng 1 vào 2 vế của 3 pt ta được: 
x+xy+y+1=1+1 <=> (x+1)(y+1)=2 
y+yz+z+1=3+1 <=> (y+1)(z+1)=4 
z+xz+z+1=7+1 <=> (z+1)(x+1)=8 
Ta có: (x+1)(y+1)(y+1)(z+1)=(y+1)2 .8=2.4=8 => (y+1)2 =1 

(y+1)(z+1)(z+1)(x+1)=(z+1)2 .2=4.8=32 => (z+1)2 =16 

(z+1)(x+1)(x+1)(y+1)=(x+1)2 .4=2.8=16 => (x+1)2 =4 
Do x;y;z không âm nên x= 1; y= 0; z= 3 
=> M = 1 +02 +32 =10

16 tháng 8 2018

ket qua =10

10 tháng 6 2017

\(\hept{\begin{cases}xy+x+y=3< =>xy+x+y+1=4< =>\left(x+1\right)\left(y+1\right)=4\left(1\right)\\yz+y+z=8< =>yz+y+z+1=9< =>\left(y+1\right)\left(z+1\right)=9\left(2\right)\\xz+x+z=15< =>xz+x+z+1=16< =>\left(x+1\right)\left(z+1\right)=16\left(3\right)\end{cases}}\)

Từ (1) , (2) và (3):

\(=>\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2=4.9.16=576=24^2\)

Do x,y,z dương =>(x+1)(y+1)(z+1)=24

từ (1)=>z+1=24:4=6=>z=5

từ (2)=>x+1=\(\frac{8}{3}\)=>x=\(\frac{5}{3}\)

từ (3)=>y+1=\(\frac{3}{2}\)=>y=\(\frac{1}{2}\)

\(=>P=x+y+z=5+\frac{5}{3}+\frac{1}{2}=\frac{43}{6}\)

23 tháng 9 2018

\(P=\frac{1}{xy-xyz-z}+\frac{1}{yz-xyz-x}+\frac{1}{xz-xzy-y}\)  .Do xyz=-z =>-xyz=1 và x+y+z=0 . Thế vào P ta được \(P=\frac{1}{xy+1+x+y}+\frac{1}{yz+1+y+z}+\frac{1}{xz+1+x+z}\)\(P=\frac{1}{\left(x+1\right)\left(y+1\right)}+\frac{1}{\left(y+1\right)\left(z+1\right)}+\frac{1}{\left(x+1\right)\left(z+1\right)}\) =\(\frac{z+1+x+1+y+1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\) 

\(P=\frac{3}{xyz+z+xz+yz+xy+1+x+y}\) =\(\frac{3}{xy+yz+xz}\) (Do x+y+z=0; xyz=-1)

x+y+z=0 => (x+y+z)2=0 => x2+y2+z+2(xy+yz+xz)=0 => 2(xy+yz+xz)=-6 => xy+yz+xz=-3 Thế vào P ta được :

\(P=\frac{3}{-3}=-1\) . Chúc bạn học tốt

21 tháng 9 2018

Hình như bạn ghi thiếu đề r . Còn xyz=-1 nữa 

18 tháng 1 2017

pt 1) x=y=z  Cosi 3 số 

4 tháng 7 2017

a,PT 1 <=> (x-y)^2+(y-z)^2+(z-x)^2=0

=>x=y=z thay vào pt 2 ta dc x=y=z=3

c, xét x=y thay vào ta dc x=y=2017 hoặc x=y=0

Xét x>y => \(\sqrt{x}+\sqrt{2017-y}>\sqrt{y}+\sqrt{2017-x}\)

=>\(\sqrt{2017}>\sqrt{2017}\)(vô lí). TT x<y => vô lí. Vậy ...

d, pT 2 <=> x^2 - xy + y^2 = 2z = 2(x + y)

\(< =>x^2-x\left(y+2\right)+y^2-2y=0\). Để pt có no thì \(\Delta>0\)

 <=> \(\left(y+2\right)^2-4\left(y^2-2y\right)\ge0\)

<=> \(-3y^2+12y+4\ge0\)<=>\(3\left(y-2\right)^2\le16\)

=> \(\left(y-2\right)^2\in\left\{1,2\right\}\). Từ đó tìm dc y rồi tìm nốt x

b,\(\hept{\begin{cases}x^3=y^3+9\\3x-3x^2=6y^2+12y\end{cases}}\).Cộng theo vế ta dc \(\left(x-1\right)^3=\left(y+2\right)^3\)=>x=y+3. Từ đó tìm dc x,y