ho tam giác ABC có A bằng 90 độ trên cạnh BC lấy điểm E sao cho be = ba tia phân giác của góc B cắt AC tại D.a,chứng minh tam giác ABD=tam giác EBD và DE vuông góc với BC.b, gọi F là giao điểm của AB và DE. chứng minh AF=CE.c,gọi I là trung điểm của CF,chứng minh điểm B,I,D thẳng hàng.d,chứng minh góc BAE=góc EAC+góc ECA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
Sửa đề: Chứng minh DE\(\perp\)BC
Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
=>\(\widehat{BAD}=\widehat{BED}\)
=>\(\widehat{BED}=90^0\)
=>DE\(\perp\)BC
b: Sửa đề: F là giao điểm của AB và DE
Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔDAF=ΔDEC
=>AF=EC
2:
a: Xét ΔAED vuông tại E và ΔAFD vuông tại F có
AD chung
góc EAD=góc FAD
=>ΔAED=ΔAFD
=>AE=AF
b: Xét ΔABC có góc B=góc C
nên ΔABC cân tại A
ΔABC cân tại A
mà AD là đường phân giác
nên AD là đường trung trực của BC
Xét ΔABC có AE/AB=AF/AC
nên EF//BC
c: Sửa đề; F là trung điểm của DN
Xét ΔADM có
AE vừa là đường cao, vừa là trung tuyến
=>ΔADM cân tại A
=>AD=AM
Xét ΔADN có
AF vừa là đường cao, vừa là trung tuyến
=>ΔADN cân tại A
=>AN=AD
=>AM=AN
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
b: Ta có: ΔABD=ΔEBD
nên DA=DE
Ta có: ΔABD=ΔEBD
nên \(\widehat{BAD}=\widehat{BED}=90^0\)
hay DE⊥BC
ối dồi ôi