9. Cho tam giác ABC nhọn (AB < AC) có đường cao AH. Gọi D là trung điểm của AC, K là điểm đối xứngcủa H qua D. a) Chứng minh: AHCK là hình chữ nhật. b) Gọi I và E lần lượt là trung điểm BC và AB. Chứng minh: EDCI là hình bình hành. c) Chứng minh EDIH là hình thang cân
a: Xét tứ giác AHCK có
D là trung điểm chung của AC và HK
=>AHCK là hình bình hành
Hình bình hành AHCK có \(\widehat{AHC}=90^0\)
nên AHCK là hình chữ nhật
b: Xét ΔABC có
E,D lần lượt là trung điểm của AB,AC
=>ED là đường trung bình của ΔABC
=>ED//BC và \(ED=\dfrac{BC}{2}\)
Ta có: ED//BC
I\(\in\)BC
Do đó: ED//IC
Ta có: ED=BC/2
IC=BC/2
Do đó: ED=IC
Xét tứ giác EDCI có
ED//CI
ED=CI
Do đó: EDCI là hình bình hành
c: Ta có: ΔAHC vuông tại H
mà HD là đường trung tuyến
nên DH=DC
mà DC=EI(EDCI là hình bình hành)
nên DH=EI
Xét tứ giác EDIH có ED//IH
nên EDIH là hình thang
Hình thang EDIH có DH=EI
nên EDIH là hình thang cân