\(\frac{x-11}{37}+\frac{x+11}{39}=\frac{x+34}{41}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-5}{45}-1+\frac{x-7}{43}-1=\frac{x-9}{41}-1+\frac{x-11}{39}-1\)
\(\Leftrightarrow\frac{x-50}{45}+\frac{x-50}{43}=\frac{x-50}{41}+\frac{x-50}{39}\)
\(\Leftrightarrow\left(x-50\right)\left(\frac{1}{45}+\frac{1}{43}-\frac{1}{41}-\frac{1}{39}\right)=0\)
\(\Leftrightarrow x-50=0\) (do \(\frac{1}{45}+\frac{1}{43}-\frac{1}{41}-\frac{1}{39}\ne0\))
\(\Rightarrow x=50\)
\(a,\)\(x+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\frac{4}{41.45}=-\frac{37}{45}\)
\(x+\left(\frac{9-5}{5.9}+\frac{13-9}{9.13}+\frac{17-13}{13.17}+...+\frac{45-41}{41.45}\right)=-\frac{37}{45}\)
\(x+\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+....+\frac{1}{41}-\frac{1}{45}\right)-\frac{37}{45}\)
\(x+\left(\frac{1}{5}-\frac{1}{45}\right)=-\frac{37}{45}\)
\(x+\frac{8}{45}=-\frac{37}{45}\)
\(x=-\frac{37}{45}-\frac{8}{45}\)
\(x=-1\)
Cộng 3 vào cả 2 vế và chuyển vế xong đặt nhân tử x+50 ra ngoài ta được :
(x+50)(1/39+1/37+1/35-1/33-1/31-1/29)=0
vì (1/39+1/37+1/35-1/33-1/31-1/29) khác 0
=> x+50=0
=> x=-50
Nhớ k mình nhé
Chúc bạn học tốt
a)\(\left(\frac{3}{29}-\frac{1}{5}\right)\cdot\frac{29}{3}\)
\(=\left(\frac{3}{29}\cdot\frac{29}{3}\right)-\left(\frac{1}{5}\cdot\frac{29}{3}\right)\)
\(=1-\frac{29}{15}\)
\(=\frac{-14}{15}\)
b)\(\frac{16}{15}\cdot\frac{-5}{14}\cdot\frac{54}{24}\cdot\frac{56}{21}\)
=\(=\frac{16\cdot\left(-5\right)\cdot54\cdot56}{15\cdot14\cdot24\cdot21}\)
\(=\frac{2^4\cdot\left(-5\right)\cdot2\cdot3^3\cdot2^3\cdot7}{3\cdot5\cdot7\cdot2\cdot2^3\cdot3\cdot7}\)
\(=2^4\)
c)\(\frac{37}{7}\cdot\frac{8}{11}+\frac{37}{7}\cdot\frac{5}{11}-\frac{37}{7}\cdot\frac{2}{11}\)
\(=\frac{37}{7}\cdot\left(\frac{8}{11}+\frac{5}{11}-\frac{2}{11}\right)\)
\(=\frac{37}{7}\cdot1\)
\(=\frac{37}{7}\)
Đúng nhớ k nhen!
\(\frac{x+32}{11}+\frac{x+33}{12}=\frac{x+34}{13}+\frac{x+35}{14}\)
\(\Leftrightarrow\left(\frac{x+32}{11}-1\right)+\left(\frac{x+33}{12}-1\right)=\left(\frac{x+34}{13}-1\right)+\left(\frac{x+35}{14}-1\right)\)
\(\Leftrightarrow\frac{x-21}{11}+\frac{x-21}{12}=\frac{x-21}{13}+\frac{x-21}{14}\)
\(\Leftrightarrow\left(x-21\right)\left(\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
Vì \(\left(\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)\ne0\)
\(\Rightarrow x-21=0\Rightarrow x=21\)
\(\frac{x+32}{11}+\frac{x+33}{12}=\frac{x+34}{13}+\frac{x+35}{14}\)
\(\Leftrightarrow\left(\frac{x+32}{11}-1\right)+\left(\frac{x+33}{12}-1\right)=\left(\frac{x+34}{13}-1\right)+\left(\frac{x+35}{14}-1\right)\)( trừ cả hai vế cho 2 )
\(\Leftrightarrow\frac{x-21}{11}+\frac{x-21}{12}=\frac{x-21}{13}+\frac{x-21}{14}\)
\(\Leftrightarrow\frac{x-21}{11}+\frac{x-21}{12}-\frac{x-21}{13}-\frac{x-21}{14}=0\)
\(\Leftrightarrow\left(x-21\right)\left(\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
Mà \(\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne0\)
\(\Rightarrow x-21=0\)
\(\Leftrightarrow x=21\)
Vậy \(x=21\)
\(\frac{15}{41}+\frac{-138}{41}< x< \frac{1}{2}+\frac{1}{3}+\frac{1}{6}\)
\(\Leftrightarrow\frac{-123}{41}< x< \frac{1.3+1.2+1}{6}\)
\(\Leftrightarrow-3< x< 1\)
\(\Rightarrow x\in\left\{-2;-1;0\right\}\)
\(\frac{x}{5}=\frac{15}{2}-\frac{51}{10}\)
\(\frac{x}{5}=\frac{15.5-51}{10}\)
\(\frac{x}{5}=\frac{24}{10}\)
\(\frac{x}{5}=\frac{12}{5}\)
\(x=12\)
\(\frac{x-1}{13}+\frac{x-3}{11}+\frac{x+1}{15}=\frac{x+37}{17}\)
\(\Rightarrow x\left(\frac{1}{13}+\frac{1}{11}+\frac{1}{15}-\frac{1}{17}\right)=\frac{37}{17}+\frac{1}{13}+\frac{3}{11}-\frac{1}{15}\)
\(\Rightarrow x=\frac{\frac{37}{17}+\frac{1}{13}+\frac{3}{11}-\frac{1}{15}}{\frac{1}{13}+\frac{1}{11}+\frac{1}{15}-\frac{1}{17}}\)
=> x = 14
\(\Leftrightarrow\left(\frac{x-1}{13}-1\right)+\left(\frac{x-3}{11}-1\right)+\left(\frac{x+1}{15}-1\right)=\frac{x+37}{17}-3\)
\(\Leftrightarrow\frac{x-14}{13}+\frac{x-14}{11}+\frac{x-14}{15}=\frac{x-14}{17}\)
\(\Leftrightarrow\left(x-14\right)\left(\frac{1}{13}+\frac{1}{11}+\frac{1}{15}-\frac{1}{17}\right)=0\)
\(\Leftrightarrow x-14=0\) ( vì \(\frac{1}{13}+\frac{1}{11}+\frac{1}{15}-\frac{1}{17}\ne0\) )
\(\Leftrightarrow x=14\)
Vậy: Tập nghiệm của phương trình là: \(S=\left\{14\right\}\)