K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
6 tháng 2

Nếu không có thêm điều kiện gì của x thì biểu thức không có min bạn nhé.

17 tháng 5 2018

Ta có:\(B=x^2+8x\)

\(B=x^2+8x+16-16\)

\(B=\left(x+4\right)^2-16\ge-16\)

"="<=>x=-4

\(C=5x^2+x+7\)

\(C=\dfrac{1}{5}\left(25x^2+5x+35\right)\)

\(C=\dfrac{1}{5}\left(25x^2+5x+\dfrac{1}{4}\right)+\dfrac{139}{20}\)

\(C=\dfrac{1}{5}\left(5x+\dfrac{1}{2}\right)^2+\dfrac{174}{25}\ge\dfrac{139}{20}\)

"="<=>x=-0,1

\(D=\dfrac{3}{-4x^2+4x-7}\)

Ta có:\(-4x^2+4x-7=-\left(4x^2-4x+1\right)-6=-\left(2x-1\right)^2-6\le-6\)

\(\Rightarrow D\ge\dfrac{3}{-6}=-\dfrac{1}{2}\)

"="<=>x=0,5

12 tháng 7 2017

\(C=\left(23-x\right)\left(3x+5\right)+13\)

\(=69x+115-3x^2-5x+13\)

\(=-3x^2+64x+128\)

\(=-3\left(x^2-\dfrac{64}{3}x+\dfrac{1024}{9}\right)+\dfrac{1408}{3}\)

\(=-3\left(x-\dfrac{32}{3}\right)^2+\dfrac{1408}{3}\le\dfrac{1408}{3}\)

Vậy \(Max_C=\dfrac{1408}{3}\)

Để \(C=\dfrac{1408}{3}\) thì \(x-\dfrac{32}{3}=0\Rightarrow x=\dfrac{32}{3}\)

d, \(D=\left(2-3x\right)\left(3x+5\right)-7\)

\(=6x+10-9x^2-15x-7\)

\(=-9x^2-9x+3\)

\(=-9\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{21}{4}\)

\(=-9\left(x-\dfrac{1}{2}\right)^2+\dfrac{21}{4}\le\dfrac{21}{4}\)

Vậy \(Max_D=\dfrac{21}{4}\) khi \(x-\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)

12 tháng 7 2017

undefined

2 tháng 8 2016

\(A=\frac{-\left(x^2-7\right)-2}{x^2-7}=-1-\frac{2}{x^2-7}\)

Ta có

\(x^2\ge0\) với mọi x

\(\Rightarrow x^2-7\ge-7\)

\(\Rightarrow\frac{1}{x^2-7}\le-\frac{1}{7}\)

\(\Rightarrow-\frac{2}{x^2-7}\ge\frac{2}{7}\)

\(\Rightarrow5-\frac{2}{x^2-7}\ge\frac{37}{7}\)

\(\Rightarrow A\ge\frac{37}{7}\)

Dấu "  =  " xảy ra khi x=0

Vậy MinA=\(\frac{37}{7}\) khi x=o

15 tháng 2 2017

A=0 nhé

15 tháng 2 2017

a) \(\left|x-7\right|+\left|x+5\right|=\left|7-x\right|+\left|x+5\right|\ge\left|7-x+x+5\right|=12\)

Dấu "=" xảy ra khi \(-5\le x\le7\)

b) Đặt \(\left|2x-1\right|=t\left(t\ge0\right)\)

ta được \(t^2-3t+2=\left(t^2-2.\frac{3}{2}.x+\frac{9}{4}\right)-\frac{1}{4}=\left(t-\frac{3}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

Dấu "=" xảy ra khi \(\left(t-\frac{3}{2}\right)^2=0\Leftrightarrow t-\frac{3}{2}=0\Leftrightarrow t=\frac{3}{2}\Leftrightarrow\left|2x-1\right|=\frac{3}{2}\)

<=>\(\orbr{\begin{cases}2x-1=-\frac{3}{2}\\2x-1=\frac{3}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-\frac{1}{2}\\2x=\frac{5}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{4}\\x=\frac{5}{4}\end{cases}}\)

Vậy...........

22 tháng 7 2019

1) \(\frac{1}{2}=\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)\(\Leftrightarrow\)\(x+y\ge8\)

\(\frac{1}{2}=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}\)\(\Leftrightarrow\)\(xy=2\left(x+y\right)\ge16\)

\(A=\sqrt{x}+\sqrt{y}\ge2\sqrt[4]{xy}\ge2\sqrt[4]{16}=4\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=4\)

2) \(B=\sqrt{3x-5}+\sqrt{7-3x}\ge\sqrt{3x-5+7-3x}=\sqrt{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{7}{3}\end{cases}}\)

\(B=\sqrt{3x-5}+\sqrt{7-3x}\le\frac{3x-5+1+7-3x+1}{2}=2\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=2\)