Tính giá trị của biểu thức M = (x3+6x-5) với x= \(\sqrt[3]{3+\sqrt{17}}+\sqrt[3]{3-\sqrt{17}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x=\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\)
\(\Rightarrow x^3=3+2\sqrt{2}+3-2\sqrt{2}+3\sqrt[3]{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)\)
\(=6+3\sqrt[3]{9-8}.x=6+3x\)
\(\Rightarrow x^3-3x=6\)
\(y=\sqrt[3]{17+12\sqrt{2}}+\sqrt[3]{17-12\sqrt{2}}\)
\(\Rightarrow y^3=17+12\sqrt{2}+17-12\sqrt{2}+3\sqrt[3]{\left(17+12\sqrt{2}\right)\left(17-12\sqrt{2}\right)}\left(\sqrt[3]{17+12\sqrt{2}}+\sqrt[3]{17-12\sqrt{2}}\right)\)
\(=34+3\sqrt[3]{289-288}.y=34+3y\)
\(\Rightarrow y^3-3y=34\)
\(P=x^3+y^3-3\left(x+y\right)+2009=\left(x^3-3x\right)+\left(y^3-3y\right)+2009\)
\(=6+34+2009=2049\)
Bài 1:
Để M có nghĩa thì \(\left\{{}\begin{matrix}x+4\ge0\\2-x\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-4\\x\le2\end{matrix}\right.\Leftrightarrow-4\le x\le2\)
Số giá trị nguyên thỏa mãn điều kiện là:
\(\left(2+4\right)+1=7\)
Đặt \(\sqrt[3]{6-2\sqrt{7}}=a\), \(\sqrt[3]{6+2\sqrt{7}}=b\)
\(\Rightarrow\left\{{}\begin{matrix}a^3+b^3=12\\ab=2\end{matrix}\right.\)
\(x=\sqrt[3]{6-2\sqrt{7}}+\sqrt[3]{6+2\sqrt{7}}=a+b\)
\(\Rightarrow x^3=a^3+b^3+3ab\left(a+b\right)=12+3.2\left(a+b\right)=12+6x\)
\(\Rightarrow x^3-6x-12=0\)
\(Q=x^3-6x+17=\left(x^3-6x-12\right)+29=29\)
Ta có: \(x=\sqrt{\dfrac{2}{3}}:\sqrt{\dfrac{3}{2}}\)
\(=\sqrt{\dfrac{2}{3}:\dfrac{3}{2}}=\sqrt{\dfrac{2}{3}\cdot\dfrac{2}{3}}=\dfrac{2}{3}\)
Ta có: \(M=\sqrt{6x+5}\)
\(=\sqrt{6\cdot\dfrac{2}{3}+5}=\sqrt{9}=3\)
Ta có \(x=\sqrt{\dfrac{2}{3}}:\sqrt{\dfrac{3}{2}}=\sqrt{\dfrac{2}{3}.\dfrac{2}{3}}=\dfrac{2}{3}\)
Thay \(x=\dfrac{2}{3}\) vào biếu thức \(M\), ta được :
\(M=\sqrt{6.\dfrac{2}{3}+5}=\sqrt{4+5}=\sqrt{9}=3\)
Ta có : \(x=\frac{\left(\sqrt{5}+2\right)\sqrt[3]{17\sqrt{5}-38}}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}\)
\(=\frac{\left(\sqrt{5}+2\right)\sqrt[3]{5\sqrt{5}-3.5.2+3.\sqrt{5}.4-8}}{\sqrt{5}+\sqrt{\left(3-\sqrt{5}\right)^2}}\)
\(=\frac{\left(\sqrt{5}+2\sqrt[3]{\sqrt{5}-2^{ }}\right)^3}{\sqrt{5}+3-\sqrt{5}}\) 2)3 trong căn bậc nhé mk ko vt đc ( ko bt giải thick thông cảm )
\(=\frac{\sqrt{5}^2-2^2}{3}\)
\(=\frac{1}{3}\)
Vậy \(A=\left(3.\left(\frac{1}{3}\right)^3+8.\left(\frac{1}{3}\right)^2+2\right)^{2011}=3^{2011}\)
Trả lời
A=(3x3+8x2+2)2011 với x=\(\frac{\left(\sqrt{5}+2\right)\sqrt[3]{17\sqrt{5}-38}}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}\)
=\(\frac{\left(\sqrt{5}+2\right)\sqrt[3]{5\sqrt{5}-3.5.2+3\sqrt{5}.4-8}}{\sqrt{5}\sqrt{9-6\sqrt{5}+5}}\)
=\(\frac{\left(\sqrt{5}+2\right)\sqrt[3]{\left(5\right)^3-3.\left(\sqrt{5}\right)^2.2+3\sqrt{5}.2^2-2^3}}{\sqrt{5}+\sqrt{\left(3-\sqrt{5}\right)^2}}\)
=\(\frac{\left(\sqrt{5}+2\right)\sqrt[3]{\left(\sqrt{5}-2\right)^3}}{\sqrt{5}+3-\sqrt{5}}\)
=\(\frac{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}{3}\)
=1/3
Học tốt !
Ta có
\(x=\frac{\left(\sqrt{5}+2\right)\sqrt[3]{17\sqrt{5}-38}}{\sqrt{5}-\sqrt{14-6\sqrt{5}}}\)
\(=\frac{\left(\sqrt{5}+2\right)\sqrt[3]{5\sqrt{5}-3\cdot5\cdot2+3\sqrt{5}\cdot4-8}}{\sqrt{5}-\sqrt{\left(3-\sqrt{5}\right)^2}}\)
\(=\frac{\left(\sqrt{5}+2\right)\sqrt[3]{\left(\sqrt{5}-2\right)^3}}{\sqrt{5}+3-\sqrt{5}}\)
\(=\frac{\sqrt{5}^2-2^2}{3}=\frac{1}{3}\)
Với \(x=\frac{1}{3}\)thay vào bt ta có
\(A=\left[3\cdot\left(\frac{1}{3}\right)^3+8\cdot\left(\frac{1}{3}\right)^2+2\right]^{2011}\)
\(=3^{2011}\)
\(x^3\)=\(3+\sqrt{17}+3-\sqrt{17}+3.\sqrt[3]{\left(3+\sqrt{17}\right)\left(3-\sqrt{17}\right)}.x\)
=\(6+3\sqrt[3]{-8}x=6-6x\)
\(\Rightarrow x^3+6x-6=0\)
M=\(x^3+6x-5=\left(x^3+6x-6\right)+1=0+1=1\)