K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E. a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC b ) Chứng minh , BF.FC = DF.EF  c ) Tính BC biết DE = 5cm , EF = 4cm . d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC   .Bài 26...
Đọc tiếp

Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E. 

a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC 

b ) Chứng minh , BF.FC = DF.EF 

 c ) Tính BC biết DE = 5cm , EF = 4cm 

. d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC

 

 

 .Bài 26 : Cho  tam giác ABC vuông tại A , đường cao AH . Gọi E , F lần lượt là chân đường vuông góc kẻ tử H đến AB , AC 

a ) Chứng minh : AH = EF 

b ) Chứng minh : AB^2 = BH.BC 

c ) Chứng minh :tam giác HEF đồng dạng vớ itam giác  ABC 

d ) Kẻ tìa Bx vuông góc BC , Bx cắt đường thẳng AC tại K. Gọi O là giao điểm của EF và AH . Chứng minh : CO đi qua trung điểm của KB . 

 

 

Bài 27 : Cho tam giác ABC có góc A = 90 độ ; AB = 15cm , AC = 20cm , đường phân giác BD cắt đường cao AH tại K. 

a ) Tính BC , AD 

b ) Chứng minh tam giác AHB đồng dạng với tam giác CAB , 

c ) Chứng minh : BH.BD = BK.BA , d ) Gọi M là trung điểm của KD . Kẻ tia Bx song song với AM . Tia Bx cắt tia AH tại J , Chứng minh : HK.AJ = AK.HJ .

3
2 tháng 9 2020

Bài 26 :                                             Bài giải

a. Do AB⊥AC,HE⊥AB,HF⊥AC

⇒EAF^=AEH^=AFH^=90o

→◊AEHF là hình chữ nhật

2 tháng 9 2020

Bài 27 :                                                                  Bài giải

Hình : 

A B C D H K M x J

Còn bài giải tham khảo : Câu hỏi của nguyễn nhật trang nhung - Toán lớp 8 - Học toán với OnlineMath

Câu hỏi của nguyễn nhật trang nhung - Toán lớp 8 - Học toán với OnlineMath

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất đường phân giác của tam giác)

hay \(\dfrac{AD}{6}=\dfrac{CD}{10}\)

mà AD+CD=AC(D nằm giữa A và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)

Do đó: \(\dfrac{AD}{6}=\dfrac{1}{2}\)

hay AD=3(cm)

Vậy: AD=3cm

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

=>góc HAB=góc ACB

b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có

góc HAB=góc HCA

=>ΔHAB đồng dạng với ΔHCA

=>HA/HC=HB/HA

=>HA^2=HB*HC

c: BC=căn 15^2+20^2=25cm

BD là phân giác

=>AD/AB=CD/BC

=>AD/3=CD/5=(AD+CD)/(3+5)=20/8=2,5

=>AD=7,5cm

BD=căn 15^2+7,5^2=15/2*căn 5(cm)

5 tháng 5 2016

a,Xét tam giác ABC và tam giác HBA có :

Góc ABC chung

Góc BAC = góc BHA (=90 độ )

=> ABC đồng dạng HBA

Áp dụng định lý Pytago có BC2=AC+AB=> BC =20

ABC ~ HBA => AC/AH = BC/AB => AH = ACxAB:BC = 9,6

b,Xét tam giác BHA có BM là phân giác => MH:MA=BH:BA(tính chất đường phân giác) (1)

Tương tự,BD là phân giác của BAC => DA:DC=AB:BC. (2)

Mặt khác ,ABC~HBA =>AB:BC= BH:BA   (3)

Từ (1) , (2), (3) => MH:MA=DA:DC

c,Gọi E là trung điểm của AC => AE = AC:2 = 8(cm)

Ta có: E là trung điểm AC,NE // AK ( Cùng vuông góc với AC)

=> EN là đường trung bình của tam giác AKC => N là trung điểm CK => AN là đường trung tuyến ứng với cạnh huyền => AN = CK:2.

Mặ khác,Xét AEN và BCA có:

NAE = ABC ( cùng phụ BAH)

AEN = BAC ( =90 độ )

=> AEN ~ BCA (g.g) => AE : AB =AN : BC => 8: 12 = AN : 20 => AN = 40/3

CK = 2x AN =>CK = 40:3x2=20/3

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow BC^2=15^2+20^2=625\)

hay BC=25(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot25=15\cdot20\)

\(\Leftrightarrow AH\cdot25=300\)

hay AH=12(cm)

Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:

\(AC^2=AH^2+CH^2\)

\(\Leftrightarrow CH^2=AC^2-AH^2=20^2-12^2=256\)

hay HC=16(cm)

Vậy: BC=20cm; AH=12cm; HC=16cm

8 tháng 2 2021

Lớp 8 đã học hệ thức lượng đâu bạn, lớp 9 mới học mà

1 tháng 5 2022

a/

Xét tg vuông HAB và tg vuông ABC có

\(\widehat{HAB}=\widehat{ACB}\) (cùng phụ với \(\widehat{ABC}\) ) => tg HAB đồng dạng với tg ABC (g.g.g)

b/ Xét tg vuông ABC có

\(AB^2=HB.BC\)  (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

\(\Rightarrow HB=\dfrac{AB^2}{BC}=\dfrac{15^2}{25}=9cm\)

c/ Đề bài sai sửa thành HA.HB=HC.HD

Xét tg vuông HBD và tg vuông HAC có 

BD//AC (gt) \(\Rightarrow\widehat{HBD}=\widehat{HCA}\) (góc so le trong)

=> tg HBD đồng dạng với tg HAC 

\(\Rightarrow\dfrac{HD}{HA}=\dfrac{HB}{HC}\Rightarrow HA.HB=HC.HD\)

d/

Xét tg vuông HAC, nối HN có

AN=CN (gt) => \(HN=AN=CN=\dfrac{AC}{2}\) (Trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)

=> tg NHC cân tại N \(\Rightarrow\widehat{NHC}=\widehat{NCH}\) (góc ở đáy tg cân) (1)

Xét tg vuông HBD, nối HM có

BM=DM (gt) => \(HM=BM=DM=\dfrac{BD}{2}\) (Trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)

=> tg MBH cân tại M => \(\widehat{MBH}=\widehat{MHB}\) (góc ở đáy tg cân) (2)

Mà BD//AC (gt) \(\Rightarrow\widehat{NCH}=\widehat{MBH}\) (góc sole trong ) (3)

Từ (1) (2) (3) \(\Rightarrow\widehat{NHC}=\widehat{MHB}\)

Mà \(\widehat{NHC}+\widehat{BHN}=\widehat{BDC}=180^o\)

 

\(\Rightarrow\widehat{MHB}+\widehat{BHN}=\widehat{MHN}=180^o\) => M; H; N thẳng hàng

30 tháng 3 2022

a, Xét ΔABC và ΔHBA có :

\(\widehat{A}=\widehat{AHB}=90^0\)

\(\widehat{B}:chung\)

\(\Rightarrow\Delta ABC\sim\Delta HBA\left(g-g\right)\)

b, Xét ΔABC vuông tại A, theo định lý Pi-ta-go ta có :

\(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)

Ta có : \(\Delta ABC\sim\Delta HBA\left(cmt\right)\)

\(\Rightarrow\dfrac{AC}{AH}=\dfrac{BC}{AB}\)

hay \(\dfrac{8}{AH}=\dfrac{10}{6}\)

\(\Rightarrow AH=\dfrac{8.6}{10}=4,8\left(cm\right)\)

c, Xét ΔAHB và ΔCHA có :

\(\widehat{BHA}=\widehat{AHC}=90^0\)

\(\widehat{BAH}=\widehat{C}\left(phụ\cdot với\cdot\widehat{B}\right)\)

\(\Rightarrow\Delta AHB\sim\Delta CHA\left(g-g\right)\)

\(\Rightarrow\dfrac{AH}{HC}=\dfrac{BH}{AH}\)

\(\Rightarrow AH^2=HC.BH\)

d, Xét ΔABD và ΔHBI có :

\(\widehat{H}=\widehat{A}=90^0\)

\(\widehat{ABD}=\widehat{HBI}\left(phân\cdot giác\cdot BD\right)\)

\(\Rightarrow\Delta ABD\sim\Delta HBI\left(g-g\right)\)

\(\Rightarrow\dfrac{AB}{HB}=\dfrac{BD}{BI}\)

\(\Rightarrow AB.BI=BD.HB\left(đpcm\right)\)

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

DO đó:ΔHBA\(\sim\)ΔABC

b: \(HB=\dfrac{AB^2}{BC}=9\left(cm\right)\)

1 tháng 5 2022

mik cần câu d ákhocroi