Tim n\(\in\)Z, de A la so nguyen
_________________so lon nhat
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(A=\frac{2n-7}{n-7}=\frac{2n-14+7}{n-7}=\frac{2\left(n-7\right)+7}{n-7}=\frac{2\left(n-7\right)}{n-7}+\frac{7}{n-7}=2+\frac{7}{n-7}\)
a) Để A là số nguyên \(\Rightarrow2+\frac{7}{n-7}\in Z\) . Vì 2 thuộc Z nên \(\frac{7}{n-7}\in Z\)
\(\Rightarrow7⋮\left(n-7\right)\Rightarrow n-7\inƯ\left(7\right)=\left\{-7;-11;7\right\}\)
\(\Rightarrow n\in\left\{-7+7;-1+7;1+7;7+7\right\}\)
\(\Rightarrow n\in\left\{0;6;8;14\right\}\)
b) nếu n là số lớn nhất nên n = 14
Thay n = 14 vào \(A=\frac{2n-7}{n-7}\Rightarrow A=\frac{2.14-7}{14-7}=\frac{21}{7}=3\)
Vì câu b mik không rõ đề lắm.
k mik nhé
Câu b chịu khó suy luận tí nha. Cũng phân tích ra 2 + 7/(n+7). Rõ ràng để A là số nguyên lớn nhất thì 7/(n+7) phải là số nguyên lớn nhất. Mà phân thức này tử không đổi nên muốn đạt giá trị lớn nhất thì mẫu phải đạt số nguyên dương nhỏ nhất (là bằng 1).
Nên đáp số n=8
để P thuộc Z =>2n+1 chia hết cho n+5
=>2n+10-9 chia hết cho n+5
=>2(n+5)-9 chia hết cho n+5
=>9 chia hết cho n+5
\(\Rightarrow n+5\in\left\{-9;-3;-1;1;3;9\right\}\)
\(\Rightarrow n\in\left\{-14;-8;-6;-4;-2;4\right\}\)
\(A=2017-\frac{720}{a-6}=2017+\frac{720}{6-a}\)điều kiện \(a\ne6\)
Để A lớn nhất thì \(\frac{720}{6-a}\)phải là số dương lớn nhất; Suy ra \(6-a>0\Rightarrow a< 6\)và \(6-a\)phải khác 0 và nhỏ nhất.
\(a\in N;a< 6\)nên \(6-a\)nhỏ nhất = 1 khi \(a=5\).
GTLN là 2737
Ta có A=\(\frac{6n-4}{2n+3}=\frac{6n+9-5}{2n+3}=3-\frac{5}{2n+3}\)
Để A nguyên thì 2n+3 \(\in\)Ư (5) ={\(\pm1;\pm5\)}
thay lần lượt vào để tìm n nha bn
cho phan so A= (6n- 1)/3n+2
tim n thuocZ de a co gia tri nguyen
tim n thuoc Z de a co gia tri lon nhat
câu GTLN nè:
A= \(2-\frac{5}{3n+2}\) => hiệu lớn nhất <=> số trừ: \(\frac{5}{3n+2}\) bé nhất vì 3n+2 thuộc Ư(5) nên ta xét:
* 3n+2=-1 => 5/-1=-5
* 3n+2=1 => 5/1=5
* 3n+2=5 => 5/5=1
* 3n+2=-5 => 5/-5=-1
=> 3n+2=-1 là nhỏ nhất <=> n= -1 (t/m đk)