Cho nửa đường tròn (O; 6cm) đường kính AB. Trên cùng nửa mặt phẳng bờ
AB chứa đường tròn, vẽ các tiếp tuyến Ax,By với nửa đường tròn. Trên nửa đường
tròn, lấy điểm E bất kì. Vẽ tiếp tuyến của (O) tại E cắt Ax, By lần lượt tại D và C.
a) Chứng minh OD L OC. Biết OD = 10 cm tính CD và DOE (làm tròn đến độ)
b) Chứng minh AB là tiếp tuyến của đường tròn ngoại tiếp ADOC
c) Tìm vị trí điểm E trên nửa đường tròn (O) để chu vi ABCD nhỏ nhất?
a: Xét (O) có
DA,DE là các tiếp tuyến
=>DA=DE và OD là phân giác của góc AOE
OD là phân giác của góc AOE
=>\(\widehat{AOE}=2\cdot\widehat{DOE}\)
Xét (O) có
CE,CB là các tiếp tuyến
Do đó: CE=CB và OC là phân giác của góc EOB
OC là phân giác của góc EOB
=>\(\widehat{EOB}=2\cdot\widehat{EOC}\)
Ta có: \(\widehat{EOA}+\widehat{EOB}=180^0\)(hai góc kề bù)
=>\(2\left(\widehat{EOC}+\widehat{EOD}\right)=180^0\)
=>\(2\cdot\widehat{DOC}=180^0\)
=>\(\widehat{DOC}=90^0\)
Ta có: ΔOED vuông tại E
=>\(OE^2+ED^2=OD^2\)
=>\(ED^2+6^2=10^2\)
=>\(ED^2=100-36=64\)
=>\(ED=\sqrt{64}=8\left(cm\right)\)
Xét ΔODC vuông tại O có OE là đường cao
nên \(DE\cdot DC=DO^2\)
=>\(8\cdot DC=10^2=100\)
=>DC=100/8=12,5(cm)
Xét ΔDOE vuông tại E có \(sinDOE=\dfrac{DE}{DO}=\dfrac{4}{5}\)
nên \(\widehat{DOE}\simeq53^0\)
b: Gọi F là trung điểm của DC
Ta có: ΔDOC vuông tại O
mà OF là đường trung tuyến
nên OF=FD=FC
=>F là tâm đường tròn ngoại tiếp ΔDOC
Xét hình thang ABCD có
O,F lần lượt là trung điểm của AB,CD
=>OF là đường trung bình của hình thang ABCD
=>OF//AD//CB
Ta có: OF//AD
AD\(\perp\)AB
Do đó: FO\(\perp\)AB
=>AB là tiếp tuyến của (F)
=>AB là tiếp tuyến của đường tròn ngoại tiếp ΔODC