cho số n dương a,b,c,d 1<\(\frac{a}{a +b+c}\)+\(\frac{b}{a+c+d}\)+\(\frac{c}{c+d+a}\)+\(\frac{d}{d+a+b}\)<2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do a < b < c < d < m < n
=> 2c < c + d
m< n => 2m < m+ n
=> 2c + 2a +2m = 2 ( a + c + m) < a +b + c + d + m + n)
Do đó :
(a + c + m)/(a + b + c + d + m + n) < 1/2(đcpcm)
Bạn có thể nói rõ cái chỗ này giúp mình đc ko
Cảm ơn bạn nhiều
Bài 2:
uses crt;
var a:array[1..199]of integer;
i,n:integer;
begin
clrscr;
write('n='); readln(n);
for i:=1 to n do
begin
write('a[',i,']='); readln(a[i]);
end;
{----------------------------xuat-------------------------------}
for i:=1 to n do write(a[i]:4);
readln;
end.
Bài 3:
uses crt;
var a:array[1..199]of integer;
i,n,x,dem:integer;
begin
clrscr;
write('n='); readln(n);
for i:=1 to n do
begin
write('a[',i,']='); readln(a[i]);
end;
{----------------------------xu-ly-------------------------------}
write('x='); readln(x);
dem:=0;
for i:=1 to n do
if a[i]=x then inc(dem);
writeln('trong day co ',dem,' gia tri ',x);
readln;
end.
Do a < b < c < d < m < n
=> 2c < c + d
m< n => 2m < m+ n
=> 2c + 2a +2m = 2 ( a + c + m) < a +b + c + d + m + n)
Do đó :
\(\dfrac{\text{(a + c + m)}}{\left(a+b+c+d+m+n\right)}\) < \(\dfrac{1}{2}\)
1:
uses crt;
var a:array[1..100]of integer;
i,n,dem,t:integer;
tb:real;
begin
clrscr;
write('Nhap n='); readln(n);
for i:=1 to n do
begin
write('A[',i,']='); readln(a[i]);
end;
t:=0;
dem:=0;
for i:=1 to n do
if a[i]>0 then
begin
t:=t+a[i];
inc(dem);
end;
writeln('Tong cac so duong la: ',t);
writeln('So luong cac so duong la: ',dem);
tb:=t/dem;
writeln('Trung binh cong cac so duong la: ',tb:4:2);
readln;
end.
2:
uses crt;
var n,i,s:integer;
t:real;
begin
clrscr;
write('Nhap n='); readln(n);
s:=0;
t:=1;
for i:=1 to n do
begin
s:=s+i;
t:=t*i;
end;
writeln('Tong cua day so tu 1 toi ',n,' la: ',s);
writeln('Tich cua day so tu 1 toi ',n,' la: ',t);
readln;
end.
Ta có :
a < b \(\Rightarrow\)2a < a + b \(\Rightarrow\)\(\frac{a}{a+b}< \frac{1}{2}\)
c < d \(\Rightarrow\)2c < c + d \(\Rightarrow\)\(\frac{c}{c+d}< \frac{1}{2}\)
m < n \(\Rightarrow\)2m < m + n \(\Rightarrow\)\(\frac{m}{m+n}< \frac{1}{2}\)
\(\Rightarrow\)2a + 2c + 2m < ( a + b ) + ( c + d ) + ( m + n )
\(\Rightarrow\)2 . (a + c + nm ) < a + b + c + d + m + n
\(\Rightarrow\)\(\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\)
\(a< b\Rightarrow2a< a+b\)
\(c< d\Rightarrow2c< c+d\)
\(m< n\Rightarrow2m< m+n\)
\(\Rightarrow2a+2c+2m< a+b+c+d+m+n\)
\(\Rightarrow2\left(a+c+m\right)< a+b+c+d+m+n\)
\(\Rightarrow\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\left(\text{đ}pcm\right)\)