K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2023

a: Xét tứ giác BCEF có

\(\widehat{BFC}=\widehat{BEC}=90^0\)

=>BCEF là tứ giác nội tiếp

=>B,C,E,F cùng thuộc một đường tròn

b: Xét tứ giác AEHF có

\(\widehat{AEH}+\widehat{AFH}=90^0+90^0=180^0\)

=>AEHF là tứ giác nội tiếp

=>A,E,H,F cùng thuộc một đường tròn

c: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

\(\widehat{EAB}\) chung

Do đó: ΔAEB đồng dạng với ΔAFC

=>\(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)

=>\(AE\cdot AC=AB\cdot AF\)

d: Xét (O) có

ΔABD nội tiếp

AD là đường kính

Do đó: ΔABD vuông tại B

=>AB\(\perp\)BD

Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

=>AC\(\perp\)CD

Ta có: BE\(\perp\)AC

CD\(\perp\)CA

Do đó: BE//CD

=>BH//CD

Ta có: CH\(\perp\)AB

BD\(\perp\)AB

Do đó: CH//BD

Xét tứ giác BHCD có

BH//CD

BD//CH

Do đó: BHCD là hình bình hành

=>BC cắt HD tại trung điểm của mỗi đường

mà M là trung điểm của BC

nên M là trung điểm của HD

Xét ΔDAH có

M,O lần lượt là trung điểm của DH,DA

=>MO là đường trung bình của ΔDAH

=>MO=AH/2

=>AH=2MO

Đề khó nhìn quá bạn ơi

Đề bài khó nhìn quá bạn ơi

AH
Akai Haruma
Giáo viên
13 tháng 8 2021

Bạn viết lại đề bằng công thức toán. Chụp hình ntn chữ hơi xấu khó đọc á.

11 tháng 11 2023

loading...

a: AB và AC là hai tiếp tuyến cắt nhau tại A

b: Xét tứ giác OBAC có

\(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)

=>OBAC là tứ giác nội tiếp

=>O,B,A,C cùng thuộc 1 đường tròn

13 tháng 12 2021

Câu 4: 

a: Xét ΔMIN và ΔMIP có

MI chung

IN=IP

MN=MP

Do đó: ΔMIN=ΔMIP

4 tháng 9 2021

A

7 tháng 7 2018

A B C E F M I

a, Xét t/g AMB và t/g AMC có:

AB=AC(gt)

BAM=CAM(gt)

AM chung

=>t/g AMB=t/g AMC (c.g.c)

b, Xét t/g BEM và t/g CMF có:

góc BEM = góc CFM = 90 độ (gt)

MB = MC (t/g AMB=t/g AMC)

góc EBM = góc FCM (gt)

=>t/g BEM = t/g CFM (cạnh huyền - góc nhọn)

=>ME=MF (2 cạnh tương ứng)

c, BI // FC => góc IBM = góc FCM (so le trong)

Xét t/g BIM và t/g CFM có:

góc IBM = góc FCM (vừa chứng minh)

MB = MC (t/g AMB = t/g AMC)

BMI = CMF (đối đỉnh)

=>t/g BIM = t/g CFM (g.c.g)

=>BI = BF (2 cạnh tương ứng) 

Mà BE = CF (t/g BEM = t/g CFM)

=> BE = BI

d, Vì MI = MF (t/g BIM = t/g CFM), ME = MF (câu b)

=> MI = ME

Mà \(MI=\frac{IF}{2}\)

=> \(ME=\frac{IF}{2}\)