Câu1:Cho đường tròn(O;5cm) và dây AB cách tâm Ở một khoảng bằng 3cm.Tính độ dài dây AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
XétΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>\(AH^2=4\cdot9=36\)
=>\(AH=\sqrt{36}=6\left(cm\right)\)
Câu 2: Độ dài cạnh hình vuông là:
\(\sqrt{16}=4\left(cm\right)\)
Độ dài đường chéo của hình vuông là:
\(\sqrt{4^2+4^2}=4\sqrt{2}\left(cm\right)\)
Bán kính đường tròn ngoại tiếp hình vuông là:
\(\dfrac{4\sqrt{2}}{2}=2\sqrt{2}\left(cm\right)\)
Câu 5:
Vì \(13^2=12^2+5^2\)
nên đây là tam giác vuông
=>Bán kính đường tròn ngoại tiếp là R=13/2=6,5(cm)
Câu 1:
Xét ΔABC vuông tại A có
\(tanB=\dfrac{AC}{AB}\)
=>\(\dfrac{AC}{6}=\dfrac{4}{3}\)
=>\(AC=\dfrac{4}{3}\cdot6=8\left(cm\right)\)
Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=100\)
=>\(BC=\sqrt{100}=10\left(cm\right)\)
Câu 4:
a: Thay x=2 và y=5 vào y=(2m-1)x+3, ta được:
2(2m-1)+3=5
=>2(2m-1)=2
=>2m-1=1
=>2m=2
=>\(m=\dfrac{2}{2}=1\)
b: Khi m=1 thì \(y=\left(2\cdot1-1\right)x+3=x+3\)
a: Xét (O) có
CA,CE là các tiếp tuyến
Do đó: CA=CE và OC là phân giác của góc AOE
Xét (O) có
DE,DB là các tiếp tuyến
Do đó: DE=DB và OD là phân giác của góc EOB
Ta có: CA+DB
=CE+DE
=CD
b: Ta có: OC là phân giác của góc AOE
=>\(\widehat{AOE}=2\cdot\widehat{EOC}\)
OD là phân giác của góc EOB
=>\(\widehat{EOB}=2\cdot\widehat{EOD}\)
Ta có: \(\widehat{AOE}+\widehat{BOE}=180^0\)(hai góc kề bù)
=>\(2\cdot\widehat{EOC}+2\cdot\widehat{EOD}=180^0\)
=>\(2\cdot\left(\widehat{EOC}+\widehat{EOD}\right)=180^0\)
=>\(2\cdot\widehat{COD}=180^0\)
=>\(\widehat{COD}=90^0\)
Câu 2:
Thay x=1 và y=1 vào y=ax+2, ta được:
\(a\cdot1+2=1\)
=>a+2=-1
=>a=-1
Vậy: Hệ số góc của đường thẳng d là -1
Câu 1:
Gọi A là tiếp điểm của tiếp tuyến kẻ từ M của (O)
=>MA\(\perp\)OA tại A
Ta có: ΔMAO vuông tại A
=>\(AM^2+AO^2=MO^2\)
=>\(AM^2=10^2-6^2=64\)
=>\(AM=\sqrt{64}=8\left(cm\right)\)
Câu 1: Để đường thẳng y=(m2+1)x+m có hệ số góc bằng 1 thì
\(m^2+1=1\)
=>\(m^2=0\)
=>m=0
Câu 2: Thay x=4 và y=0 vào y=x-2m, ta được:
4-2m=0
=>2m=4
=>m=2
Câu 3:
ΔABC vuông cân tại A
=>AB=AC=10cm và \(BC^2=AB^2+AC^2\)
=>\(BC^2=10^2+10^2=200\)
=>\(BC=10\sqrt{2}\left(cm\right)\)
Ta có: ΔABC vuông cân tại A
=>\(R=\dfrac{BC}{2}=5\sqrt{2}\left(cm\right)\)
Gọi OH là khoảng cách từ O đến AB
=>OH\(\perp\)AB tại H
Theo đề, ta có: OA=OB=5cm và OH=3cm
Ta có: ΔOHA vuông tại H
=>\(HA^2+HO^2=OA^2\)
=>\(HA^2+3^2=5^2\)
=>\(HA^2=25-9=16\)
=>\(HA=\sqrt{16}=4\left(cm\right)\)
Ta có: ΔOAB cân tại O
mà OH là đường cao
nên H là trung điểm của AB
=>\(AB=2\cdot AH=8\left(cm\right)\)