Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5 đề 4
Tìm số nguyên tố P sao cho : a,p + 2 ; p + 6 ; p + 8 ; p + 14 cũng là số nguyên tố
Lời giải:
Nếu $p$ chia hết cho 5 thì do $p$ là số nguyên tố nên $p=5$
Khi đó, $p+2, p+6, p+8, p+14$ cũng là snt (thỏa mãn)
Nếu $p$ chia 5 dư 1. Đặt $p=5k+1$
Khi đó: $p+14=5k+15=5(k+3)\vdots 5$. Mà $p+14>5$ nên không thể là snt (không tm)
Nếu $p$ chia 5 dư 2. Đặt $p=5k+2$
Khi đó: $p+8=5k+10=5(k+2)\vdots 5$. Mà $p+8>5$ nên không thể là snt (không tm)
Nếu $p$ chia 5 dư 3. Đặt $p=5k+3$
Khi đó: $p+2=5k+5=5(k+1)\vdots 5\Rightarrow p+2=5\Rightarrow p=3$. Khi đó $p+6=9$ không là snt (không tm)
Nếu $p$ chia 5 dư 4. Đặt $p=5k+4$
Khi đó: $p+6=5k+10=5(k+2)\vdots 5$. Mà $p+6>5$ nên không thể là snt (không tm)
Vậy $p=5$
Lời giải:
Nếu $p$ chia hết cho 5 thì do $p$ là số nguyên tố nên $p=5$
Khi đó, $p+2, p+6, p+8, p+14$ cũng là snt (thỏa mãn)
Nếu $p$ chia 5 dư 1. Đặt $p=5k+1$
Khi đó: $p+14=5k+15=5(k+3)\vdots 5$. Mà $p+14>5$ nên không thể là snt (không tm)
Nếu $p$ chia 5 dư 2. Đặt $p=5k+2$
Khi đó: $p+8=5k+10=5(k+2)\vdots 5$. Mà $p+8>5$ nên không thể là snt (không tm)
Nếu $p$ chia 5 dư 3. Đặt $p=5k+3$
Khi đó: $p+2=5k+5=5(k+1)\vdots 5\Rightarrow p+2=5\Rightarrow p=3$. Khi đó $p+6=9$ không là snt (không tm)
Nếu $p$ chia 5 dư 4. Đặt $p=5k+4$
Khi đó: $p+6=5k+10=5(k+2)\vdots 5$. Mà $p+6>5$ nên không thể là snt (không tm)
Vậy $p=5$