Bài 1: Cho góc AOB và phân giác OC gọi OA phẩy, OB phẩy, OC phẩy theo thứ tự là tia đối của OA, OB, OC. Hãy chứng tỏ rằng OC phẩy là phân giác của A phẩyOB phẩy
CÁC BN CỐ GẮNG GIÚP MK NHÉ AI NHANH MK TICK CHO THANKS
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\widehat{A'OC'}=\widehat{AOC}\)(đối đỉnh)
\(\widehat{B'OC'}=\widehat{BOC}\)(đối đỉnh)
mà \(\widehat{AOC}=\widehat{BOC}\)(do oc là tia p/g góc AOB)
từ 3 điều trên => \(\widehat{A'OC'}=\widehat{B'OC'}\)
Mặt khác Oc' nằm giữa hai tia Oa' và Ob'
từ đấy => Oc' là tia p/g của \(\widehat{A'OB'}\)
Mà Oc là tia đối của tia Oc'
=> Oc là tia p/g của \(\widehat{A'OB'}\)
Chúc bạn hk tốt!!!
CC' cắt BB'=>BOC=B'OC'
AA' cắt CC'=>AOC=A'OC'
OA và OA' là 2 tia nằm trên 2 nửa mặt phẳng bờ CC'
=>OA' và OB nằm trên cùng 1 nửa mặt phẳng bờ CC'
OB và OB' là 2 tia nằm trên 2 nửa mặt phẳng bờ CC'
=>OA' và OB' nằm trên 2 nửa mặt phẳng bờ CC'
=>OA' và OB' nằm trên 2 nửa mặt phẳng bờ OC'
=>OC' nằm giữa OA' và OB'
mà A'OC'=C'OB'=>OC' là tia phân giác của A'OB'
=>đpcm