Cho góc xAy = 40 độ, trên tia phân giác At của góc A lấy điểm D. Kẻ DB vuông góc Ax tại B, DC vuông góc Ay tại C
a, C/m tam giác ADB = tam giác ADC và tam giác ABC cân
b, C/m AD là đường trung trực của BC
c, lấy BD giao Ay tại M, CD giao Ax tại N. C/m tam giác BDN = tam giác CDm
d, C/m Ad là đg trung trực của MN và BC//MN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABD vuông tại D và ΔACD vuông tại D có
AB=AC(ΔABC cân tại A)
AD chung
Do đó: ΔABD=ΔACD(cạnh huyền-cạnh góc vuông)
Suy ra: DB=DC(hai cạnh tương ứng)
a) Xét ΔADB vuông tại D và ΔADC vuông tại D có
AB=AC(ΔABC cân tại A)
AD chung
Do đó: ΔADB=ΔADC(cạnh huyền-cạnh góc vuông)
Suy ra: DB=DC(Hai cạnh tương ứng)
b) Ta có: ΔADB=ΔADC(cmt)
nên \(\widehat{BAD}=\widehat{CAD}\)(hai góc tương ứng)
hay \(\widehat{EAD}=\widehat{FAD}\)
Xét ΔEAD vuông tại E và ΔFAD vuông tại F có
AD chung
\(\widehat{EAD}=\widehat{FAD}\)(cmt)
Do đó: ΔEAD=ΔFAD(cạnh huyền-góc nhọn)
Suy ra: AE=AF(Hai cạnh tương ứng)
Xét ΔAEF có AE=AF(cmt)
nên ΔAEF cân tại A(Định nghĩa tam giác cân)
a: Xét ΔADB và ΔADC có
AB=AC
góc BAD=góc CAD
AD chung
=>ΔABD=ΔACD
b: Xét ΔAMD vuông tại M và ΔAND vuông tại N có
AD chung
góc MAD=góc NAD
=>ΔMAD=ΔNAD
=>MD=DN
=>ΔDMN cân tại D
5 )
tự vẽ hình nha bạn
a)
Xét tam giác ABM và tam giác ACM có :
AM cạnh chung
AB = AC (gt)
BM = CM (gt)
suy ra : tam giác ABM = tam giác ACM ( c-c-c)
suy ra : góc BAM = góc CAM ( 2 góc tương ứng )
Hay AM là tia phân giác của góc A
b)
Xét tam giác ABD và tam giác ACD có :
AD cạnh chung
góc BAM = góc CAM ( c/m câu a)
AB = AC (gt)
suy ra tam giác ABD = tam giác ACD ( c-g-c)
suy ra : BD = CD ( 2 cạnh tương ứng)
C) hay tam giác BDC cân tại D
Bài 4: a) Xét ABE vàHBE có:
BE chung
ABE= EBH (vì BE là phân giác)
=> ABE=HBE (cạnh huyền- góc nhọn)
b, Vì ABE=HBE(cmt)
=> BA = BH và EA = EH
=> điểm B, E cách đều 2 mút của đoạn thẳng AH
=>BE là đường trung trực của đoạn thẳng AH
c, Vì AC vuông góc BK => EAK = \(90\) độ
EH vuông góc BC => EHC = 90 độ
Xét AEK vàHEC có:
EAK = EHC (= 90độ)(cmt)
AE = EH (cmt)
AEK = HEC (đối đỉnh)
=> AEK HEC (g.c.g)
=> EK = EC (2 cạnh tương ứng)
Xét HEC vuông tại H (vì EHC = 90 độ )
có EH < EC(cạnh huyền lớn hơn cạnh góc vuông)
Mà AE = EH (cmt) => AE < EC
Bạn tự vẽ hình nha!!!
3a.
Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:
ABD = EBD (BD là tia phân giác của ABE)
BD là cạnh chung
=> Tam giác ABD = Tam giác EBD (cạnh huyền - góc nhọn)
=> AB = EB (2 cạnh tương ứng) => B thuộc đường trung trực của AE
=> AD = ED (2 cạnh tương ứng) => D thuộc đường trung trực của AE
=> BD là đường trung trực của AE.
3b.
Xét tam giác AFD và tam giác ECD có:
FAD = CED ( = 90 )
AD = ED (tam giác ABD = tam giác EBD)
ADF = EDC (2 góc đối đỉnh)
=> Tam giác ADF = Tam giác EDC (g.c.g)
=> DF = DC (2 cạnh tương ứng)
3c.
Tam giác ADF vuông tại A có:
AD < FD (quan hệ giữa góc và cạnh đối diện trong tam giác vuông)
mà FD = CD (theo câu b)
=> AD < CD.
3a.
Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:
ABD = EBD (BD là tia phân giác của ABE)
BD là cạnh chung
=> Tam giác ABD = Tam giác EBD (cạnh huyền - góc nhọn)
=> AB = EB (2 cạnh tương ứng) => B thuộc đường trung trực của AE
=> AD = ED (2 cạnh tương ứng) => D thuộc đường trung trực của AE
=> BD là đường trung trực của AE.
3b.
Xét tam giác AFD và tam giác ECD có:
FAD = CED ( = 90 )
AD = ED (tam giác ABD = tam giác EBD)
ADF = EDC (2 góc đối đỉnh)
=> Tam giác ADF = Tam giác EDC (g.c.g)
=> DF = DC (2 cạnh tương ứng)
3c.
Tam giác ADF vuông tại A có:
AD < FD (quan hệ giữa góc và cạnh đối diện trong tam giác vuông)
mà FD = CD (theo câu b)
=> AD < CD.
a: Xét ΔABD vuông tại B và ΔACD vuông tại C có
AD chung
\(\widehat{BAD}=\widehat{CAD}\)
Do đó: ΔABD=ΔACD
=>AB=AC và DB=DC
Xét ΔABC có AB=AC
nên ΔABC cân tại A
b: Ta có: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: DB=DC
=>D nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra AD là đường trung trực của BC
c: Xét ΔDBN vuông tại B và ΔDCM vuông tại C có
DB=DC
\(\widehat{BDN}=\widehat{CDM}\)(hai góc đối đỉnh)
Do đó: ΔDBN=ΔDCM
d: Ta có: ΔDBN=ΔDCM
=>DN=DM và BN=CM
Ta có: AB+BN=AN
AC+CM=AM
mà AB=AC và BN=CM
nên AN=AM
=>A nằm trên đường trung trực của NM(3)
ta có: DM=DN
=>D nằm trên đường trung trực của MN(4)
Từ (3) và (4) suy ra AD là đường trung trực của MN
Xét ΔAMN có \(\dfrac{AB}{BN}=\dfrac{AC}{CM}\)
nên BC//MN