Tìm số dư khi chia C cho 13, biết rằng C= 1+3^2+3^3+3^4+...+3^99
Mình cần gấp các bạn giải giúp mình ạ! Mình cảm ơn.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi k là thương khi a chia cho 3
Ta có a=3k+2
=> a {5;8;11;14;...}
p là thương khi a chia cho 5.
Ta có a=5k+3
=> a { 8;13;18;23;...}
Vậy a là 8
1)
Ta thấy 99 là số lẻ, 20y là số chẵn với mọi y
=> Để 6x + 99 = 20y thì 6x là số lẻ
=> x = 0
Thay x = 0 ta có 60 + 99 = 20y
=> 1 + 99 = 20y
=> 100 = 20y
=> y = 100 ; 20
=> y = 5
Vậy x = 0, y = 5
`Answer:`
2.
Ta có: \(M=1+3+3^2+3^3+3^4+...+3^{98}+3^{99}+3^{100}\)
\(=\left(1+3\right)+\left(3^2+3^3+3^4\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)
\(=4+3^2.\left(1+3+3^2\right)+...+3^{98}.\left(1+3+3^2\right)\)
\(=4+3^2.13+3^{98}.13\)
\(=4+13.\left(3^2+...+3^{98}\right)\)
Vậy `M` chia `13` dư `4`
Ta có: \(M=1+3+3^2+3^4+...+3^{99}+3^{100}\)
\(=1+\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(=1+3.\left(1+3+3^2+3^3\right)+3^5.\left(1+3+3^2+3^3\right)+...+3^{97}.\left(1+3+3^2+3^3\right)\)
\(=1+3.40+3^5.40+...+3^{97}.40\)
\(=1+40.\left(3+3^5+...+3^{97}\right)\)
Mà ta thấy \(40.\left(3+3^5+...+3^{97}\right)⋮40\)
Vậy `M` chia `40` dư `1`
Số cần tìm cộng thêm 1 đơn vị thì chia hết cho 2,3,4,5,6,7
Số chia hết 4,5,6,7 thì cũng chia hết cho 2 và 3
Số nhỏ nhất chia hết cho 4,5,6,7 là
4x5x6x7=840
Số nhỏ hơn 2000 lớn hơn 1000 thoả mãn đề bài là
840x2=1680
Ta có;
P=( 3+32 ) + ( 33+34 )+....+ (399+3100)
P=1.(3+32 ) + 32.(3+32)+...+ 398. ( 3+32)
P=1.12 + 32.12 + ... + 398. 12
P=12.( 1+32+...+ 398) chia hết cho 12
Lời giải:
$C=1+3^2+3^3+(3^4+3^5+3^6)+(3^7+3^8+3^9)+....+(3^{97}+3^{98}+3^{99})$
$=37+3^4(1+3+3^2)+3^7(1+3+3^2)+...+3^{97}(1+3+3^2)$
$=11+13.2+(1+3+3^2)(3^4+3^7+...+3^{97})$
$=11+13.2+13(3^4+3^7+...+3^{97})$
$=11+13(2+3^4+3^7+....+3^{97})$
$\Rightarrow C$ chia $13$ dư $11$.