K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2023

MNPQ là hình bình hành tâm I

=>I là trung điểm chung của MP và NQ

Xét ΔKQN có KI là trung tuyến

nên \(\overrightarrow{KQ}+\overrightarrow{KN}=2\cdot\overrightarrow{KI}\)

Xét ΔKMP có KI là đường trung tuyến

nên \(\overrightarrow{KM}+\overrightarrow{KP}=2\cdot\overrightarrow{KI}\)

mà \(\overrightarrow{KQ}+\overrightarrow{KN}=2\cdot\overrightarrow{KI}\)

nên \(\overrightarrow{KM}+\overrightarrow{KP}+\overrightarrow{KQ}+\overrightarrow{KN}=2\overrightarrow{KI}+2\overrightarrow{KI}=4\overrightarrow{KI}\)

13 tháng 9 2017

Hình đa giác TenDaGiac1: DaGiac(B, C, 3) Hình đa giác TenDaGiac1: DaGiac(B, C, 3) Đoạn thẳng f: Đoạn thẳng [B, C] Đoạn thẳng g: Đoạn thẳng [C, A] Đoạn thẳng h: Đoạn thẳng [A, B] Đoạn thẳng i_1: Đoạn thẳng [E, D] Đoạn thẳng j: Đoạn thẳng [D, F] Đoạn thẳng m: Đoạn thẳng [E, G] Đoạn thẳng n: Đoạn thẳng [F, G] Đoạn thẳng p: Đoạn thẳng [D, K] Đoạn thẳng r: Đoạn thẳng [A, G] B = (0.28, 3.28) B = (0.28, 3.28) B = (0.28, 3.28) C = (5.78, 3.32) C = (5.78, 3.32) C = (5.78, 3.32) Điểm A: DaGiac(B, C, 3) Điểm A: DaGiac(B, C, 3) Điểm A: DaGiac(B, C, 3) Điểm D: Điểm trên f Điểm D: Điểm trên f Điểm D: Điểm trên f Điểm E: D đối xứng qua h Điểm E: D đối xứng qua h Điểm E: D đối xứng qua h Điểm F: D đối xứng qua g Điểm F: D đối xứng qua g Điểm F: D đối xứng qua g Điểm G: Giao điểm đường của k, l Điểm G: Giao điểm đường của k, l Điểm G: Giao điểm đường của k, l Điểm K: Giao điểm đường của h, m Điểm K: Giao điểm đường của h, m Điểm K: Giao điểm đường của h, m Điểm I: Giao điểm đường của g, j Điểm I: Giao điểm đường của g, j Điểm I: Giao điểm đường của g, j Điểm J: Giao điểm đường của g, m Điểm J: Giao điểm đường của g, m Điểm J: Giao điểm đường của g, m

a) Do D, E đối xứng qua AB nên tam giác EKD cân tại K.

Do EDFG là hình bình hành nên \(\widehat{KED}=180^o-\widehat{EDF}=180^o-\left(180^o-30^o-30^o\right)=60^o\)

Vậy KDE là tam giác đều.

 b) Câu này phải ta KDFG mới là hình thang cân.

Ta có KDFG đã là hình thang.

Lại có \(\widehat{GFD}=\widehat{KED}\) ( Hai góc đối của hình bình hành)

 và \(\widehat{KED}=\widehat{EKD}\) (tam giác KDE đều)  và \(\widehat{EKD}=\widehat{KDF}\) (so le trong)

Vậy nên \(\widehat{GFD}=\widehat{KDF}\)

Vậy KDFG là hình thang cân (Hai góc kề một đáy bằng nhau)

c) Gọi I, J là giao điểm của DF và KG với AC.

Ta có ngay I là trung điểm DF nên J cũng là trung điểm KG.

Từ đó ta có \(\Delta AJK=\Delta AJG\) (Hai cạnh góc vuông)

\(\Rightarrow\widehat{GAC}=\widehat{KAJ}=60^o=\widehat{ACB}\)

Vậy AG // BC.

13 tháng 9 2017

30o lấy đâu ra vậy

Chỉ mình với :))

23 tháng 12 2021

a: Xét tứ giác MNEP có

H là trung điểm của NP

H là trung điểm của ME

Do đó: MNEP là hình bình hành

b: Ta có: MNEP là hình bình hành

=>MN//PE

mà QP//MN

và PE,QP có điểm chung là P

nên E,P,Q thẳng hàng