Tìm x ϵ Z biết a) |x|=1998 b) |x|=5 với x >0 c) |x|<3 với x <0 d) |x|>2 với x>-6 e) |x| =-|-35| f) 153-|x|=91 g) |x|-41=54 h)|x|+14=17 i) |x-2|=2015 k) x + (-62)+(-46)=-14 m) 25+(x-5)=-123-(15-123) Giúp mình với, cứu, đang cần gấp á!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 17-{-x+[-x-(-x)]}=-16
17-{-x+0}=-16
17-{-x}=-16
{-x}=17+16
{-x}=32
x=-32
a) I 2x-5 I = 13
=> 2x-5 =13 => x=9
hoặc 2x-5= -13 => x=\(\dfrac{-8}{2}\)
a) | 2x-5 | = 13
=>2x-5 = 13 hoặc 2x-5 = -13
+)2x-5 = 13
=>2x = 13+5 =18
+)2x-5 =-13
=>2x=-13+5 = -8
=>x=-4
Vậy x thuộc {9;-4}
Vậy x=9
b)|7x+3|=66
=>7x+3 = 66 hoặc 7x+3 = -66
+)7x+3=66
=>7x=66-3=63
=>x=9
+)7x+3=-66
=>7x=-66-3=-69
=>x=-69/7 (loại vì x thuộc Z )
Vậy x=9
c) Có | 5x-2|\(\le\)0
mà |5x-2|\(\ge\)0
=>|5x-2|=0
=>5x-2=0
=>5x=2
=>x=2/5 ( loại vì x thuộc Z)
Vậy x=\(\varnothing\)
Lời giải:
Ta thấy: $\sqrt{(x-2024)^2}\geq 0$ với mọi $x\in\mathbb{R}$
$|x+y-4z|\geq 0$ với mọi $x,y,z\in\mathbb{R}$
$\sqrt{5y^2}\geq 0$ với mọi $y\in\mathbb{R}$
Do đó để tổng của chúng bằng $0$ thì bản thân mỗi số đó phải nhận giá trị $0$
Hay:
$\sqrt{(x-2024)^2}=|x+y-4z|=\sqrt{5y^2}=0$
$\Leftrightarrow x=2024; y=0; z=\frac{x+y}{4}=506$
a) \(Q=\) \(\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}}\left(x>0;x\ne1\right)\)
\(Q=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
\(Q=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
\(Q=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
\(Q=\dfrac{2\sqrt{x}}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
\(Q=\dfrac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\) \(=\dfrac{2}{x-1}\) \(\left(đpcm\right)\).
b) Để \(Q\in Z\) <=> \(\dfrac{2}{x-1}\in Z\) <=> \(x-1\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
Ta có bảng sau:
x -1 | 1 | -1 | 2 | -2 |
x | 2(TM) | 0(ko TM) | 3(TM) | -1(koTM) |
Vậy để biểu thức Q nhận giá trị nguyên thì \(x\in\left\{2;3\right\}\)
Bạn cần viết đề bằng công thức toán để được hỗ trợ tốt hơn ( biểu tượng hộp công thức toán là $\sum$)
Nhìn thế này mình không dịch được đề luôn.
Từ 3 phương trình trên
\(\left(x+y+z\right)=\dfrac{-5}{x}=\dfrac{9}{y}=\dfrac{5}{z}=\dfrac{-5+9+5}{x+y+z}=\dfrac{9}{x+y+z}\)
\(\Rightarrow\left(x+y+z\right)^2=9\Rightarrow\left(x+y+z\right)=\pm3\)
+ Với \(x+y+z=3\) Thay vào từng phương trình ta có
\(x=-\dfrac{5}{3};y=3;z=\dfrac{5}{3}\)
+ Với \(x+y+z=-3\) Thay vào từng phương trình có
\(x=\dfrac{5}{3};y=3;z=-\dfrac{5}{3}\)
a/ \(\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)^2=0^2\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Vậy ..
b/ \(x\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
Vậy ..
c/ \(x^2+4x=0\)
\(\Leftrightarrow x\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
Vậy ..
d/ \(\left(2x+3\right)^2=49\)
\(\Leftrightarrow\left(2x+3\right)^2=7^2=\left(-7\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=7\\2x+3=-7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
Vậy ..
a. (x-1)2 = 0
=> x-1=0 => x=1
b. x(x-5) = 0
=> \(\left[{}\begin{matrix}x=0\\x-5=0\end{matrix}\right.\)=> \(\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
c. x2 + 4x = 0
x(x+4) = 0
=>\(\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
d. (2x+3)2 = 49
(2x+3)2 = \(\left(\pm7\right)^2\)
=>\(\left[{}\begin{matrix}2x+3=7\\2x+3=-7\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
Bạn sắp xếp thứ tự câu hỏi lại rõ ràng hơn ạ. Và lớp 6 thì chưa có học giá trị tuyệt đối \(\left|x\right|\), cho nên mong bạn xem kĩ lại nha!
Bạn viết rõ từng câu đề bài ra, thế này khó nhìn không làm được.
Lớp 6 đã học |x| rồi hả e?