ko giải cách tam giác đồng dạng nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vậy thì mình xin giới thiệu luôn hai tam giác đồng dạng luôn: Định nghĩa hai tam giác đồng dạng: Hai tam giác ABC và A'B'C' gọi là đồng dạng với nhau khi chúng có các cặp cạnh tương ứng tỉ lệ và các góc tương ứng bằng nhau
a: Xét ΔEAB và ΔECM có
\(\widehat{EAB}=\widehat{ECM}\)(hai góc so le trong, AB//CM)
\(\widehat{AEB}=\widehat{CEM}\)(hai góc đối đỉnh)
Do đó: ΔEAB đồng dạng với ΔECM(g-g)
=>\(\dfrac{EA}{EC}=\dfrac{AB}{CM}=\dfrac{EB}{EM}\)
\(\dfrac{EA}{EC}=\dfrac{AB}{CM}\)
mà \(CM=\dfrac{CD}{2}\)
nên \(\dfrac{EA}{EC}=AB:\dfrac{CD}{2}=\dfrac{2\cdot AB}{CD}\)
b: Xét ΔFAB và ΔFMD có
\(\widehat{FAB}=\widehat{FMD}\)(hai góc so le trong, AB//DM)
\(\widehat{AFB}=\widehat{MFD}\)(hai góc đối đỉnh)
Do đó: ΔFAB đồng dạng với ΔFMD
=>\(\dfrac{FA}{FM}=\dfrac{FB}{MD}=\dfrac{AB}{MD}\)
Ta có: \(\dfrac{FA}{FM}=\dfrac{AB}{MD}\)
\(\dfrac{BE}{EM}=\dfrac{BA}{MC}\)
mà MD=MC
nên \(\dfrac{FA}{FM}=\dfrac{BE}{BM}\)
=>\(\dfrac{MF}{FA}=\dfrac{ME}{EB}\)
Xét ΔMAB có \(\dfrac{MF}{FA}=\dfrac{ME}{EB}\)
nên FE//AB
Ta có: FE//AB
AB//CD
Do đó: FE//CD
c: Xét ΔADM có HF//DM
nên \(\dfrac{HF}{DM}=\dfrac{AF}{AM}\)
Xét ΔBDM có FE//DM
nên \(\dfrac{FE}{DM}=\dfrac{BE}{BM}\)
Xét ΔBMC có EG//MC
nên \(\dfrac{EG}{MC}=\dfrac{BE}{BM}\)
Ta có: \(\dfrac{FE}{DM}=\dfrac{BE}{BM}\)
\(\dfrac{EG}{MC}=\dfrac{BE}{BM}\)
Do đó: \(\dfrac{FE}{DM}=\dfrac{EG}{MC}\)
mà DM=MC
nên FE=EG
Ta có: \(\dfrac{AF}{FM}=\dfrac{BE}{EM}\)
=>\(\dfrac{MF}{FA}=\dfrac{ME}{EB}\)
=>\(\dfrac{MF+FA}{FA}=\dfrac{ME+EB}{EB}\)
=>\(\dfrac{MA}{AF}=\dfrac{MB}{EB}\)
=>\(\dfrac{FA}{AM}=\dfrac{BE}{BM}\)
=>\(\dfrac{HF}{DM}=\dfrac{FE}{DM}\)
=>HF=FE
mà FE=EG
nên HF=FE=EG
Không mất tính tổng quát, giả sử K nằm cùng phía so với A trên nửa mp bờ BC
Do BH song song MN, áp dụng định lý Thales trong tam giác ABH:
\(\dfrac{AB}{AM}=\dfrac{AH}{AG}\)
Do CK song song MN, áp dụng định lý Thales trong tam giác ACK:
\(\dfrac{AC}{AN}=\dfrac{AK}{AG}\)
Mặt khác do BH song song CK (cùng song song MN), áp dụng định lý Thales:
\(\dfrac{OH}{OK}=\dfrac{OB}{OC}=1\) (do O là trung điểm BC)
\(\Rightarrow OH=OK\)
Theo tính chất trọng tâm tam giác: \(AG=\dfrac{2}{3}AO\)
Do đó ta có:
\(\dfrac{AB}{AM}+\dfrac{AC}{AN}=\dfrac{AH}{AG}+\dfrac{AK}{AG}=\dfrac{AH+AK}{AG}=\dfrac{\left(OA-OK\right)+\left(OA+OH\right)}{AG}\)
\(=\dfrac{2AO}{AG}=\dfrac{3AG}{AG}=3\)
Mk nghĩ tam giác này đồng dạng với tam giác nọ
Mk ko chắc lắm đâu , đấy là suy nghĩ của mk thui
Do \(\widehat{ACD}=\widehat{BHD}\) (cùng phụ \(\widehat{DBH}\)) nên 2 tam giác vuông nói trên đồng dạng
Xét tứ giác BADE có :
\(\left\{{}\begin{matrix}\widehat{BDA}=90^o\left(gt\right)\\\widehat{AEB}=90^o\left(gt\right)\end{matrix}\right.\)
mà 2 góc này nằm ở vị trí kề cùng nhìn 1 cạnh
\(\Rightarrow\) TG BADE nội tiếp (O)
Xét \(\Delta ADC\) và \(\Delta BDH\) có :
\(\widehat{ADC}=\widehat{BDH}\left(=90^o\right)\)
\(\widehat{DAC}=\widehat{EBD}\) (cùng chắn \(\stackrel\frown{DE}\) của đtron \(\left(BADE\right)\) )
\(\Rightarrow\Delta ADC\sim\Delta BDH\left(g-g\right)\)
a: Xét ΔEBF và ΔDIF có
\(\widehat{EBF}=\widehat{DIF}\)(hai góc so le trong, EB//DI)
\(\widehat{EFB}=\widehat{DFI}\)(hai góc đối đỉnh)
Do đó: ΔEBF đồng dạng với ΔDIF
=>\(\dfrac{EB}{DI}=\dfrac{EF}{DF}\left(1\right)\)
Xét ΔFAE và ΔFCD có
\(\widehat{FAE}=\widehat{FCD}\)(hai góc so le trong, AE//CD)
\(\widehat{AFE}=\widehat{CFD}\)(hai góc đối đỉnh)
Do đó: ΔFAE đồng dạng với ΔFCD
=>\(\dfrac{AE}{CD}=\dfrac{FE}{FD}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{AE}{CD}=\dfrac{EB}{DI}\)
mà AE=EB
nên CD=DI
=>D là trung điểm của CI
b: AB=CD
CD=DI
Do đó: AB=DI
Ta có: AB//CD
D\(\in\)IC
Do đó: AB//DI
Xét tứ giác ABDI có
AB//DI
AB=DI
Do đó: ABDI là hình bình hành
c: Xét ΔAIC có
D,H lần lượt là trung điểm của IC,IA
=>DH là đường trung bình của ΔAIC
=>DH//AC và DH=AC/2
Ta có: DH//AC
O\(\in\)AC
Do đó: DH//OC và DH//OA
Ta có: \(DH=\dfrac{AC}{2}\)
\(AO=OC=\dfrac{AC}{2}\)
Do đó: DH=AO=OC
Xét tứ giác DHOC có
DH//OC
DH=OC
Do đó: DHOC là hình bình hành
=>DO cắt HC tại trung điểm của mỗi đường
=>L là trung điểm chung của DO và HC