tìm x,y sao cho biểu thức M có GTNN:
m = (3x-2y-1)2 + (1-0.25y)2-3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a.\(\Leftrightarrow7x-5x=3+12\)
\(\Leftrightarrow2x=15\Leftrightarrow x=\dfrac{15}{2}\)
b.\(\Leftrightarrow6x-10-7x-7=2\)
\(\Leftrightarrow x=-19\)
c.\(\Leftrightarrow1-3x=4x-3\)
\(\Leftrightarrow7x=2\Leftrightarrow x=\dfrac{2}{7}\)
d.\(\Leftrightarrow8x^2-4x+12x-6-8x^2-8x-2=12\)
\(\Leftrightarrow-2=12\left(voli\right)\)
Phương trình f(x;y) = 0 ⇔ (2x – 3y + 7)(3x + 2y – 1) = 0 nhận y = 2 làm nghiệm nên ta có:
(2x – 3.2 + 7)(3x + 2.2 – 1) = 0 ⇔ (2x – 6 + 7)(3x + 4 – 1) = 0
⇔ (2x + 1)(3x + 3) = 0 ⇔ 2x + 1 = 0 hoặc 3x + 3 = 0
2x + 1 = 0 ⇔ x = - 1/2
3x + 3 = 0 ⇔ x = - 1
Vậy phương trình (2x – 3y + 7)(3x + 2y – 1) = 0 nhận y = 2 làm nghiệm thì x = - 1/2 hoặc x = - 1.
a: M=3/4xy^2-2x^2y+2y^3-1/3x^2+1/2x^2y-5xy^2+x^3-y^3
=y^3-1/3x^2+x^3-17/4xy^2-3/2x^2y
=>y=1-2x và mx+2(1-2x)=3
=>y=1-2x và mx+2-4x=3
=>y=1-2x và x(m-4)=1
=>x=1/m-4 và y=1-2/m-4=m-4-2/m-4=m-6/m-4
P=3x+y
=3/m-4+m-6/m-4
=m-3/m-4
Để P nguyên thì m-4+1 chia hết cho m-4
=>\(m-4\in\left\{1;-1\right\}\)
=>\(m\in\left\{5;3\right\}\)
Ta có ( 3x-2y-1)2 \(\ge0\), với mọi x;y
( 1-0,25y)2 \(\ge0\), với mọi y
=> (3x-2y-1)2 + (1-0,25y)2 -3 \(\ge-3\), với mọi x;y
=> m \(\ge-3\)
Dấu '=' xảy ra <=> \(\hept{\begin{cases}\left(3x-2y-1\right)^2=0\\\left(1-0,25y\right)^2=0\end{cases}}\)
<=> \(\hept{\begin{cases}3x-2y=1\\0,25y=1\end{cases}< =>\hept{\begin{cases}3x-2y=1\\y=4\end{cases}}}\)
<=> \(\hept{\begin{cases}3x-8=1\\y=4\end{cases}< =>\hept{\begin{cases}x=3\\y=4\end{cases}}}\)
Vậy M min = -3 <=>\(\hept{\begin{cases}x=3\\y=4\end{cases}}\)