K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2023

|x| = √3

⇒ x = -√3; x = √3

AH
Akai Haruma
Giáo viên
26 tháng 12 2023

Lời giải:

Căn bậc 2 số học của $a$: $\sqrt{4}=2$

Giá trị tuyệt đối của $a$: $|a|=|4|=4$
Lũy thừa bậc 3 của $a$: $a^3=4^3=64$

19 tháng 12 2021

căn bậc hai: sqrt

Bình phương: sqr

21 tháng 8 2023

a/ Để rút gọn biểu thức A, chúng ta có thể thực hiện các bước sau:

Tích hợp tử số và mẫu số trong mỗi phần tử của biểu thức.Sử dụng công thức (a + b)(a - b) = a^2 - b^2 để loại bỏ căn bậc hai khỏi mẫu số.

Áp dụng các bước trên, ta có: A = (1/(2√x - 2)) + (1/(2√x + 2)) + (√x/(1 - x))

Bây giờ, chúng ta sẽ rút gọn biểu thức này: A = (1/(2√x - 2)) + (1/(2√x + 2)) + (√x/(1 - x)) = [(2√x + 2) + (2√x - 2) + (√x(2√x - 2)(2√x + 2))]/[(2√x - 2)(2√x + 2)(1 - x)] = [4√x + √x(4x - 4)]/[(4x - 4)(1 - x)] = [4√x + 4√x(x - 1)]/[-4(x - 1)(x - 1)] = [4√x(1 + x - 1)]/[-4(x - 1)(x - 1)] = -√x/(x - 1)

b/ Để tính giá trị của A với x = 4/9, ta thay x = 4/9 vào biểu thức đã rút gọn: A = -√(4/9)/(4/9 - 1) = -√(4/9)/(-5/9) = -√(4/9) * (-9/5) = -2/3 * (-9/5) = 6/5

Vậy, khi x = 4/9, giá trị của A là 6/5.

c/ Để tính giá trị của x sao cho giá trị tuyệt đối của A bằng 1/3, ta đặt: |A| = 1/3 |-√x/(x - 1)| = 1/3

Vì A là một số âm, ta có: -√x/(x - 1) = -1/3

Giải phương trình trên, ta có: √x = (x - 1)/3 x = ((x - 1)/3)^2 x = (x - 1)^2/9 9x = (x - 1)^2 9x = x^2 - 2x + 1 x^2 - 11x + 1 = 0

Sử dụng công thức giải phương trình bậc hai, ta có: x = (11 ± √(11^2 - 4 * 1 * 1))/2 x = (11 ± √(121 - 4))/2 x = (11 ± √117)/2

Vậy, giá trị của x để giá trị tuyệt đối của A bằng 1/3 là (11 + √117)/2 hoặc (11 - √117)/2.

20 tháng 11 2018

| x | - | 2 | = 5

=> | x | - 2 = 5

=> | x \ = 7

=> \(\orbr{\begin{cases}x=7\\x=-7\end{cases}}\)

3 | x | = 18

=> | x | = 6

=> \(\orbr{\begin{cases}x=6\\x=-6\end{cases}}\)

2 | x | - 5 = 7

=> | x | = 7 + 5 

=> | x | = 12

=> \(\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)

| x | : 3 - 1 = | - 4 |

=> | x | : 3 - 1 = 4

=> | x | : 3 = 5

=> | x | = 15

=> \(\orbr{\begin{cases}x=15\\x=-15\end{cases}}\)