K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2023

x O y A C B D E

Ta có

OB=OA (gt); BD=AC (gt)

=> OB+BD=OA+AC => OD=OC

Xét tg AOD và tg BOC có

OD=OC (cmt); OA=OB (gt); \(\widehat{xOy}\) chung => tg AOD = tg BOC (c.g.c)

b/

Ta có tg AOD = tg BOC (cmt) 

\(\Rightarrow\widehat{OAD}=\widehat{OBC}\)

\(\widehat{OAD}+\widehat{CAE}=\widehat{OAC}=180^o\)

\(\widehat{OBC}+\widehat{DBE}=\widehat{OBD}=180^o\)

\(\Rightarrow\widehat{OAC}=\widehat{OBD}\)

Xét tg EAC và tg EBD có

\(\widehat{OAC}=\widehat{OBD}\) (cmt)

tg AOD = tg BOC (cmt) \(\Rightarrow\widehat{ACE}=\widehat{BDE}\)

AC=BD (gt)

=> tg EAC = tg EBD (g.c.g)

c/

Xét tg OAE và tg OBE có

OA=OB (gt); OE chung

tg EAC = tg EBD (cmt) => AE=BE

=> tg OAE = tg OBE (c.c.c) \(\Rightarrow\widehat{xOE}=\widehat{yOE}\) => OE là phân giác góc \(\widehat{xOy}\)

Xét tg OCD có

OC=OD (cmt) => tg OCD cân tại O

\(\widehat{xOE}=\widehat{yOE}\) (cmt)

\(\Rightarrow OE\perp CD\) (trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường cao)

 

 

9 tháng 1 2022
9 tháng 1 2022

1 tháng 12 2016

làm hộ cái

15 tháng 12 2016

a/   OA=OB,AC=BD suy ra OA + AC= OB+BD hay OC=OD

Xét tg COB  và   DOA có OC= OD; góc COB chung ;OB=OA suy ra 2 tg này = nhau (c.g.c)

=> AD=BC (đpcm)

b/ vì tgCOB=tg DOA nên góc OCB=gócADO;góc CBO=góc OAD

Có gócOCB=góc OAD=>180- gócOCB=1800 - góc OAD hay gócEBD=góc EAC

Xét tg ACE và tg BDEcó AC =BD, góc EAC =góc EBD, góc ACE =góc EBD => 2 tg này =nhau (g.c.g) (đpcm)

c/vì tgEAC= tg EBDnên ec= ed

xét tg coe và tg doe có oe chung,oc=od,ec=ed => 2 tg này = nhau (c.c.c)

=> góc coe = góc eod mà góc coe +góc eod = góc cod => góc coe= góc eod = 1/2 góc cod => oe là phân giác góc cod hay là góc xoy(đpcm)

xét tam giác cod cân tại o(vì oc=od)  có oe là phân giác suy ra oe cũng là đường cao tam giác này theo tính chất tam giác cân =>oe vuông góc với cd

Lưu ý tg là tam giác nhé, phần cuối bạn không viết hoa đc nên thông cảm nhé

2 tháng 12 2021

a: Xét ΔOAD và ΔOCB có

OA=OC

ˆOO^ chung

OD=OB

Do đó: ΔOAD=ΔOCB

Suy ra: AD=CB

2 tháng 12 2021

làm hết + vẽ hình đc ko bạn 

16 tháng 12 2016

O y A B D C x

16 tháng 12 2016

Hình vẽ trên òn đây là bài làm:

a) Ta có: OC=OA+AC

OD=OB+BD

Mà OA=OB và AC=BD (gt)

=>OC=OD

Xét Δ OAD và Δ OBC có:

OA=OB (gt)

\(\widehat{O}\) góc chung

OC=OD (cmt)

=> Δ OAD=Δ OBC (c.g.c)

=> AD=BC (2 cạnh tương ứng)

Δ OAD=Δ OBC (cmt)

=> \(\widehat{D}=\widehat{C}\)\(\widehat{A_1}=\widehat{B_1}\) (2 góc tương ứng)

\(\widehat{A_1}+\widehat{A_2}=\widehat{B_1}+\widehat{B_2}\)= 1800 (kề bù)

=> \(\widehat{A_2}=\widehat{B_2}\)

Δ EAC và Δ EBD có:

\(\widehat{C}=\widehat{D}\) (cmt)

AC=BD (gt)

\(\widehat{A_2}=\widehat{B_2}\) (cmt)

=> Δ EAC= ΔEBD (g.c.g)

c) Δ EAC=ΔEBD (cmt)

=> EA=EB (2 cạnh tương ứng)

ΔOBE và Δ OAE có:

OB=OA (gt)

\(\widehat{B_1}=\widehat{A_1}\) (cmt)

EA=EB (cmt)

=>Δ OBE=Δ OAE (c.g.c)

=> \(\widehat{O_1}=\widehat{O_2}\) (2 góc tương ứng)

Vậy OE là phân giác \(\widehat{xOy}\).

 

 

Hình tự vẽ nha

a)Có: OC=OA+AC

OD=OB+BD

Mà : OA=OA(gt); AC=BD(gt)

=> OC=OD

Xét ΔOBC và ΔOAD có:

OC=OD(cmt)

\(\widehat{O}\) chung

OB=OA(gt)

=> ΔOBC=ΔOAD(c.g.c)

=> BC=AD

b)Vì: ΔOBC =ΔOAD(cmt)

 \(\Rightarrow\widehat{OCB}=\widehat{ODA},\widehat{OBC}=\widehat{OAD}\)( cặp góc tượng ứng)

Có:\(\widehat{OAD}+\widehat{DAC}=180^o\)

\(\widehat{OBC}+\widehat{CBD}=180^o\)

Mà:\(\widehat{OBC}=\widehat{OAD}\left(cmt\right)\)

\(\Rightarrow\widehat{DAC}=\widehat{CBD}\)

Xét ΔEAC và ΔEBD có

\(\widehat{ECA}=\widehat{EDB}\left(cmt\right)\)

AC=BD(gt)

\(\widehat{EAC}=\widehat{EBD}\left(cmt\right)\)

=> ΔEAC=ΔEBD(g.c.g)

c) Vì: ΔEAC=ΔEBD(cmt)

=> EC=ED

Xét ΔOEC và ΔOED có:

OC=OD(cmt)

\(\widehat{OCE}=\widehat{ODE}\left(cmt\right)\)

EC=ED(cmt)

=> ΔOEC=ΔOED(c.g.c)

 \(\Rightarrow\widehat{EOC}=\widehat{EOD}\)

=> OE là tia pg của \(\widehat{xOy}\)

2 tháng 1 2021

O x y A B C D E

a, Ta có : OD = OB + BD 

OC = OA + AC

Mà OA = OB ( gt ) và AC = BD ( gt )

=> OC = OD 

Xét tam giác OAD và tam giác OBC 

^O chung 

OC = OD ( cmt )

OA = OB ( gt )

=> tam giác OAD = tam giác OBC (c.g.c)

=> AD = BC ( 2 cạnh tương ứng )

Vì OAD = OBC ( cmt )

=> ^D = ^C và ^A = ^B ( 2 góc tương ứng )

Mà ^OAD + ^CAD = ^OBC + ^DBC = 1800 ( kề bù )

=> ^DBC = ^CAD 

Xét tam giác EAC và tam giác EBD ta có : 

^C = ^D ( cmt )

AC = BD ( gt )

^DBC = ^CAD ( cmt )

=> tam giác EAC = tam giác EBD ( g.c.g )