K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2021

cả 2 cách đều đúng,nhưng mình nghĩ nên làm theo c1

tk mình

6 tháng 5 2017

Minh lam the nay : B= -3(X^2 - 2X + 5 )=-3(X-1)^2 -12 >= -12 . dau = xra khi X =1

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a) Ta có:

(x2 – 2x + 5) . (x – 2)

= x2 . (x – 2) – 2x . (x – 2) + 5. (x – 2)

= x2 . x + x2 . (-2) – [2x. x + 2x.(-2) ] + 5.x + 5. (-2)

= x3 – 2x2 – (2x2 – 4x) +5x – 10

= x3 – 2x2 – 2x2 + 4x +5x – 10

= x3 +(– 2x2 – 2x2 )+ (4x +5x) – 10

= x3 – 4x2 + 9x – 10

b) Vì (x2 – 2x + 5) . (2– x) = (x2 – 2x + 5) . [-(x– 2)] = - (x2 – 2x + 5) . (x – 2)

Do đó, (x2 – 2x + 5) . (2– x) = - (x3 – 4x2 + 9x – 10) = -x3 + 4x2 - 9x + 10

1: Ta có: \(2x\left(x+3\right)-6\left(x-3\right)=0\)

\(\Leftrightarrow2x^2+6x-6x+18=0\)

\(\Leftrightarrow2x^2+18=0\left(loại\right)\)

2: Ta có: \(2x^2\left(2x+3\right)+\left(2x+3\right)=0\)

\(\Leftrightarrow2x+3=0\)

hay \(x=-\dfrac{3}{2}\)

3: Ta có: \(\left(x-2\right)\left(x+1\right)-4x\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(1-3x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)

4: Ta có: \(2x\left(x-5\right)-3x+15=0\)

\(\Leftrightarrow\left(x-5\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{3}{2}\end{matrix}\right.\)

5: Ta có: \(3x\left(x+4\right)-2x-8=0\)

\(\Leftrightarrow\left(x+4\right)\left(3x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=\dfrac{2}{3}\end{matrix}\right.\)

6: Ta có: \(x^2\left(2x-6\right)+2x-6=0\)

\(\Leftrightarrow2x-6=0\)

hay x=3

a: =>-3x=-12

=>x=4

b: =>3(3x+2)-3x-1=12x+10

=>9x+6-3x-1=12x+10

=>12x+10=6x+5

=>6x=-5

=>x=-5/6

c: =>x(x+1)+x(x-3)=4x

=>x^2+x+x^2-3x-4x=0

=>2x^2-6x=0

=>2x(x-3)=0

=>x=3(loại) hoặc x=0(nhận)

13 tháng 3 2023

loading...  loading...  

Bài 1.       Giải các phương trình sau bằng cách đưa về dạng ax + b = 0:1.  a)  5 – (x – 6) = 4(3 – 2x)               b)  2x(x + 2)2 – 8x2 = 2(x – 2)(x2 + 2x + 4)     c)  7 – (2x + 4) = – (x + 4)             d)  (x – 2)3 + (3x – 1)(3x + 1) = (x + 1)3     e)  (x + 1)(2x – 3) = (2x – 1)(x + 5) f)  (x – 1)3 – x(x + 1)2 = 5x(2 – x) – 11(x + 2)     g)  (x – 1) – (2x – 1) = 9 – x           h)  (x – 3)(x + 4) – 2(3x – 2) = (x – 4)2           i)  x(x + 3)2 – 3x = (x + 2)3 + 1      j)   (x +...
Đọc tiếp

Bài 1.       Giải các phương trình sau bằng cách đưa về dạng ax + b = 0:

1.  a)  5 – (x – 6) = 4(3 – 2x)               b)  2x(x + 2)2 – 8x2 = 2(x – 2)(x2 + 2x + 4)

     c)  7 – (2x + 4) = – (x + 4)             d)  (x – 2)3 + (3x – 1)(3x + 1) = (x + 1)3

     e)  (x + 1)(2x – 3) = (2x – 1)(x + 5) f)  (x – 1)3 – x(x + 1)2 = 5x(2 – x) – 11(x + 2)

     g)  (x – 1) – (2x – 1) = 9 – x           h)  (x – 3)(x + 4) – 2(3x – 2) = (x – 4)2      

     i)  x(x + 3)2 – 3x = (x + 2)3 + 1      j)   (x + 1)(x2 – x + 1) – 2x = x(x + 1)(x – 1)

2. a)                             b)

c)                        d)

     e)                        f)

     g)                  h)

     i)              k)

     m)                    n)

2
1 tháng 2 2022

bạn đăng tách cho mn cùng giúp nhé 

Bài 1 : 

a, \(\Leftrightarrow11-x=12-8x\Leftrightarrow7x=1\Leftrightarrow x=\dfrac{1}{7}\)

b, \(\Leftrightarrow2x\left(x^2+4x+4\right)-8x^2=2\left(x^3-8\right)\)

\(\Leftrightarrow2x^3+8x^2+8x-8x^2=2x^3-16\Leftrightarrow x=-2\)

c, \(\Leftrightarrow3-2x=-x-4\Leftrightarrow x=7\)

d, \(\Leftrightarrow x^3-6x^2+12x-8+9x^2-1=x^3+3x^2+3x+1\)

\(\Leftrightarrow3x^2+12x-9=3x^2+3x+1\Leftrightarrow x=\dfrac{10}{9}\)

e, \(\Leftrightarrow2x^2-x-3=2x^2+9x-5\Leftrightarrow x=5\)

f, \(\Leftrightarrow x^3-3x^2+3x-1-x^3-2x^2-x=10x-5x^2-11x-22\)

\(\Leftrightarrow-5x^2+2x-1=-5x^2-x-22\Leftrightarrow3x=-21\Leftrightarrow x=-7\)

1 tháng 2 2022

Cảm ơn bạn nhiều ạ 

 

17 tháng 1 2016

\(\frac{x^2+2x+1}{x^2+2x+1}+\frac{x^2+2x+2}{x^2+2x+3}=\frac{7}{6}\)

\(\Leftrightarrow\frac{x^2+2x+2-1}{x^2+2x+2}+\frac{x^2+2x+3-1}{x^2+3x+3}=\frac{7}{6}\)

\(\Leftrightarrow1-\frac{1}{x^2+2x+2}+1-\frac{1}{x^2+2x+3}=\frac{7}{6}\)

Đặt \(y=x^2+2x+1\), ta được:

\(2-\left(\frac{1}{y+1}+\frac{1}{y+2}\right)=\frac{7}{6}\)

\(\Leftrightarrow\frac{1}{y+1}+\frac{1}{y+2}=2-\frac{7}{6}=\frac{5}{6}\)

\(\Leftrightarrow\frac{1}{y+1}+\frac{1}{y+2}-\frac{5}{6}=0\)

\(\Leftrightarrow\frac{6\left(y+2\right)+6\left(y+1\right)-5\left(y+1\right)\left(y+2\right)}{6\left(y+1\right)\left(y+2\right)}=0\)

\(\Leftrightarrow6y+12+6y+6-\left(5y+5\right)\left(y+2\right)=0\)

\(\Leftrightarrow6y+12+6y+6-5y^2-10y-5y-10=0\)

\(\Leftrightarrow-5y^2-3y+8=0\)

\(\Leftrightarrow-5y^2+5y-8y+8=0\)

\(\Leftrightarrow-5y\left(y-1\right)-8\left(y-1\right)=0\)

\(\Leftrightarrow-\left(y-1\right)\left(5y+8\right)=0\)

Th1  \(y-1=0\Leftrightarrow y=1\) 

               \(\Leftrightarrow x^2+2x+1=1\)

                \(\Leftrightarrow\left(x+1\right)^2=1\Leftrightarrow x+1=1;x=1=-1\)

               \(\Leftrightarrow x=0\)   hoặc   \(x=-2\)

               

Th2  \(5y+8=0\Leftrightarrow5y=-8\Leftrightarrow y=\frac{-8}{5}\) 

       \(\Leftrightarrow x^2+2x+1=\frac{-8}{5}\)

        \(\Leftrightarrow\left(x+1\right)^2=-\frac{8}{5}\)

        Vì \(\left(x+1\right)^2\ge0\) mà   \(\left(x+1\right)^2=\frac{-8}{5}\)  ( vô lý) nên k có giá trị của x

Vậy   \(S=\left\{0;-2\right\}\)