K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 12 2023

Lời giải:

** Bổ sung điều kiện $x,y$ là số nguyên/

$x^2+xy-x-4=y$

$x^2+xy-(x+y)=4$

$x(x+y)-(x+y)=4$

$(x-1)(x+y)=4$
Vì $x,y$ nguyên nên $x-1, x+y$ nguyên. Do đó ta xét các TH sau:

TH1: $x-1=1, x+y=4\Rightarrow x=2; y=2$

TH2: $x-1=-1, x+y=-4\Rightarrow x=0; y=-4$

TH3: $x-1=4, x+y=1\Rightarrow x=5; y=-4$

TH5: $x-1=-4, x+y=-1\Rightarrow x=-3; y=2$

TH6: $x-1=2; x+y=2\Rightarrow x=3; y=-1$

TH7: $x-1=-2, x+y=-2\Rightarrow x=-1; y=-1$

26 tháng 5 2018

Khai triển rồi thu gọn

19 tháng 9 2019

đối với các câu này bạn hãy khai triển phần nào dài bằng hàng dẳng thức rồi thu gọn lại nếu đúng thì vế trái bằng vế phải

30 tháng 10 2023

(x - y)(x² + y²) - (x⁴y - xy⁴) : xy

= x³ + xy² - x²y - y³ - x³ + y³

= (x³ - x³) + (-y³ + y³) + xy² - x²y

= xy² - x²y

1) Ta có: \(\dfrac{1}{7}x^2y^3\cdot\left(-\dfrac{14}{3}xy^2\right)\cdot\left(-\dfrac{1}{2}xy\right)\left(x^2y^4\right)\)

\(=\left(-\dfrac{1}{7}\cdot\dfrac{14}{3}\cdot\dfrac{-1}{2}\right)\left(x^2y^3\cdot xy^2\cdot xy\cdot x^2y^4\right)\)

\(=\dfrac{1}{3}x^6y^{10}\)

2) Ta có: \(\left(3xy\right)^2\cdot\left(-\dfrac{1}{2}x^3y^2\right)\)

\(=9xy^2\cdot\dfrac{-1}{2}x^3y^2\)

\(=-\dfrac{9}{2}x^4y^4\)

3) Ta có: \(\left(-\dfrac{1}{4}x^2y\right)^2\cdot\left(\dfrac{2}{3}xy^4\right)^3\)

\(=\dfrac{1}{16}x^4y^2\cdot\dfrac{8}{27}x^3y^{12}\)

\(=\dfrac{1}{54}x^7y^{14}\)

AH
Akai Haruma
Giáo viên
2 tháng 10 2021

Đề là CMR $x^4-x^3y+x^2y^2-xy^3+y^4> x^2+y^2$ thì đúng hơn bạn ạ.

Lời giải:

Ta có:

$\text{VT}=(x^4+y^4-x^3y-xy^3)+x^2y^2$

$=(x-y)^2(x^2+xy+y^2)+x^2y^2\geq x^2y^2$

Mà:

$x^2y^2=\frac{x^2y^2}{2}+\frac{x^2y^2}{2}> \frac{x^2.2}{2}+\frac{2.y^2}{2}=x^2+y^2$ do $x^2> 2, y^2>2$

Do đó: $\text{VT}> x^2+y^2$ (đpcm)

6 tháng 9 2020

a) 

\(VT=\left(x^2-2^2\right)\left(x^2+4\right)\) 

\(=\left(x^2-4\right)\left(x^2+4\right)\) 

\(=\left(x^2\right)^2-4^2\) 

\(=x^4-16\) 

\(=VP\) 

b) 

\(VT=x^3+x^2y-x^2y-xy^2+xy^2+y^3\) 

\(=x^3+y^3\) 

\(=VP\)  

6 tháng 9 2020

( x + 2 )( x - 2 )( x2 + 4 )

= ( x2 - 4 )( x2 + 4 ) ( xài HĐT a2 - b2 = ( a - b )( a + b ) nhé ^^ )

= x4 - 16 ( đpcm )

( x- xy + y2 )( x + y )

= x3 + x2y - x2y - xy2 + xy2 + y3

= x3 + y3 ( đpcm )

1: =(x+y-3x)(x+y+3x)

=(-2x+y)(4x+y)

2: =(3x-1-4)(3x-1+4)

=(3x+3)(3x-5)

=3(x+1)(3x-5)

3: =(2x)^2-(x^2+1)^2

=-[(x^2+1)^2-(2x)^2]

=-(x^2+1-2x)(x^2+1+2x)

=-(x-1)^2(x+1)^2

4: =(2x+1+x-1)(2x+1-x+1)

=3x(x+2)

5: =[(x+1)^2-(x-1)^2][(x+1)^2+(x-1)^2]

=(2x^2+2)*4x

=8x(x^2+1)

6: =(5x-5y)^2-(4x+4y)^2

=(5x-5y-4x-4y)(5x-5y+4x+4y)

=(x-9y)(9x-y)

7: =(x^2+xy+y^2+xy)(x^2+xy-y^2-xy)

=(x^2+2xy+y^2)(x^2-y^2)

=(x+y)^3*(x-y)

8: =(x^2+4y^2-20-4xy+16)(x^2+4y^2-20+4xy-16)

=[(x-2y)^2-4][(x+2y)^2-36]

=(x-2y-2)(x-2y+2)(x+2y-6)(x+2y+6)