cho a+b+c=1.Tìm GTNN của P=\(\dfrac{\left(1+a\right)\left(1+b\right)\left(1+c\right)}{\left(1-a\right)\left(1-b\right)\left(1-c\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{\left(a+b+c+a\right)\left(a+b+c+b\right)\left(a+b+c+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(A\ge\dfrac{2\sqrt{\left(a+b\right)\left(a+c\right)}.2\sqrt{\left(a+b\right)\left(b+c\right)}.2\sqrt{\left(a+c\right)\left(b+c\right)}}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=8\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)
áp dụng bất đẳng thức: 1+b2>=2b. tương tự.....
ad bđt cauchy: a/b+b/c+c/a>=3∛a/b.b/c.c/a=3
P>=\(\dfrac{2ab}{bc}\)+\(\dfrac{2bc}{ca}\)+\(\dfrac{2ca}{ab}\) =2(\(\dfrac{a}{b}\)+\(\dfrac{b}{c}\)+ \(\dfrac{c}{a}\))>=2.3=6
Pmin khi a=b=c=1
Áp dụng bđt : \(1+b^2>=2b\)
bđt cauchy : \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}>3\sqrt[3]{}\) a\b . b\c . c\a = 3
Bài này mình từng giải rồi. Đề đúng phải là:
Cho a,b,c là các số thực dương thỏa mãn điều kiện abc = 1.
Tìm GTNN của \(\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{b^3}{\left(1+c\right)\left(1+a\right)}+\dfrac{c^3}{\left(1+a\right)\left(1+b\right)}\)
Bài giải:
Ta có: \(\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{1+b}{8}+\dfrac{1+c}{8}\ge\dfrac{3a}{4}\)
\(\Leftrightarrow\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}\ge\dfrac{6a-b-c-2}{8}\left(1\right)\)
Tương tự \(\left\{{}\begin{matrix}\dfrac{b^3}{\left(1+c\right)\left(1+a\right)}\ge\dfrac{6b-c-a-2}{8}\left(2\right)\\\dfrac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\dfrac{6c-a-b-2}{8}\left(3\right)\end{matrix}\right.\)
Cộng (1), (2), (3) vế theo vế ta được:
\(\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{b^3}{\left(1+c\right)\left(1+a\right)}+\dfrac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\dfrac{6a-b-c-2}{8}+\dfrac{6b-c-a-2}{8}+\dfrac{6c-a-b-2}{8}\)
\(=\dfrac{a+b+c}{2}-\dfrac{3}{4}\ge\dfrac{3\sqrt[3]{abc}}{2}-\dfrac{3}{4}=\dfrac{3}{4}\)
Dấu = xảy ra khi \(a=b=c=1\)
PS: Chép đề thì cẩn thận vô bạn.
\(\dfrac{1}{\left(1+\sqrt{ab}\sqrt{\dfrac{a}{b}}\right)^2}+\dfrac{1}{\left(1+\sqrt{ab}\sqrt{\dfrac{b}{a}}\right)^2}\ge\dfrac{1}{\left(1+ab\right)\left(1+\dfrac{a}{b}\right)}+\dfrac{1}{\left(1+ab\right)\left(1+\dfrac{b}{a}\right)}=\dfrac{1}{1+ab}\)
Tương tự: \(\dfrac{1}{\left(1+c\right)^2}+\dfrac{1}{\left(1+d\right)^2}\ge\dfrac{1}{1+cd}\)
\(\Rightarrow B\ge\dfrac{1}{1+ab}+\dfrac{1}{1+cd}=\dfrac{1}{1+ab}+\dfrac{1}{1+\dfrac{1}{ab}}=\dfrac{1}{1+ab}+\dfrac{ab}{1+ab}=1\)
\(B_{min}=1\) khi \(a=b=c=d=1\)
Áp dụng BĐT phụ ta có:
\(B\ge\dfrac{1}{1+ab}+\dfrac{1}{1+cd}=\dfrac{ab+cd+2}{1+ab+cd+abcd}=1\)
Vậy GTNN của B bằng 1 <=> a=b=c=d=1
\(S=\left(1+\dfrac{2a}{3b}\right)\left(1+\dfrac{2b}{3c}\right)\left(1+\dfrac{2c}{3d}\right)\left(1+\dfrac{2d}{3a}\right)\)
có \(1+\dfrac{2a}{3b}\ge2\sqrt{\dfrac{2a}{3b}}\)(BDT AM-GM)
\(=>1+\dfrac{2b}{3c}\ge2\sqrt{\dfrac{2b}{3c}}\)
\(=>1+\dfrac{2c}{3d}\ge2\sqrt{\dfrac{2c}{3d}}\)
\(=>1+\dfrac{2d}{3a}\ge2\sqrt{\dfrac{2d}{3a}}\)
\(=>S\ge16\sqrt{\dfrac{2a.2b.2c.2d}{3a.3b.3c.3d}}=16\sqrt{\dfrac{16abcd}{81abcd}}=16\sqrt{\dfrac{16}{81}}=\dfrac{64}{9}\)
1)\(\dfrac{c-b}{\left(a-b\right)\left(c-b\right)\left(a-c\right)}+\dfrac{a-c}{\left(b-a\right)\left(b-c\right)\left(a-c\right)}+\dfrac{b-a}{\left(b-a\right)\left(c-b\right)\left(c-a\right)}=\dfrac{c-b+a-c+b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)