Tìm x, biết:
a) \(\dfrac{x-2}{2x+1}=\dfrac{2}{3}\)
b) \(\dfrac{x-2}{2x-1}=\dfrac{-1}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow2x+\dfrac{7}{2}=\dfrac{16}{3}:\dfrac{8}{3}=2\)
=>2x=-3/2
hay x=-3/4
b: 2x+3=5
=>2x=2
hay x=1
c: =>3(x-2)=4(5+x)
=>4x+20=3x-6
=>x=-26
a: \(\Leftrightarrow2x+\dfrac{7}{2}=\dfrac{16}{3}:\dfrac{11}{3}=\dfrac{16}{11}\)
=>2x=-45/22
hay x=-45/44
b: =>x/7=-1/28:1/4=-1/7
=>x=-1
a)(7/2+2x).11/3=16/3
7/2+2x=16/3:11/3
7/2+2x=16/3.3/11
7/2+2x=16/11
2x=16/11-7/2
2x= -45/22
x= -45/22:2
x= -45/44
Vậy x= -45/44
b)x/7 +1/4= -1/28
x/7= -1/28-1/4
x/7= -2/7
=>x= -2
a/ => \(\dfrac{3}{5}.\dfrac{1}{x}=\dfrac{6}{25}\)
=> \(\dfrac{1}{x}=\dfrac{2}{5}\)
=> x = 5/2
b/ \(\Rightarrow2\left(x-\dfrac{1}{3}\right)=\dfrac{2}{15}\)
=> \(x-\dfrac{1}{3}=\dfrac{1}{15}\)
=> \(x=\dfrac{2}{5}\)
c/ => | x + 1| = 10/21
=> \(\left[{}\begin{matrix}x=-\dfrac{11}{21}\\x=-\dfrac{31}{21}\end{matrix}\right.\)
d/ => \(5x+5=6x-3\)
=> x = 8
a) (x-1):2/3=-2/5
=>x-1=-4/15
=>x=11/15
b) |x-1/2|-1/3=0
=>|x-1/2|=1/3
=>\(\left\{{}\begin{matrix}x=\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{5}{6}\\x=-\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{1}{6}\end{matrix}\right.\)
c) Tương Tự câu B
a, Ta có :
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\Rightarrow\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{4+9-4}=\dfrac{50-5}{9}=5\)
\(\Rightarrow x=11;y=17;z=23\)
b, Đặt \(\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\Rightarrow xyz=810\)
\(\Rightarrow2k.3k.5k=810\Leftrightarrow30k^3=810\Leftrightarrow k^3=27\Leftrightarrow k=3\)
\(\Rightarrow x=6;y=9;z=15\)
a) Ta có: \(\dfrac{x-1}{2}=\dfrac{2x-2}{4};\dfrac{y-2}{3}=\dfrac{3y-6}{9};\dfrac{z-3}{4}\)
Áp dụng t/c dtsbn:
\(\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}=\dfrac{2x-2+3y-6-z+3}{4+9-4}=5\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x-1}{2}=5\\\dfrac{y-2}{3}=5\\\dfrac{z-3}{4}=5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=11\\y=17\\z=12\end{matrix}\right.\)
b) Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\)
xyz = 810
=> 2k.3k.5k = 810
=> k = 3
\(\Rightarrow\left\{{}\begin{matrix}x=6\\y=9\\z=15\end{matrix}\right.\)
`a)sqrt{x^2-2x+1}=2`
`<=>sqrt{(x-1)^2}=2`
`<=>|x-1|=2`
`**x-1=2<=>x=3`
`**x-1=-1<=>x=-1`.
Vậy `S={3,-1}`
`b)sqrt{x^2-1}=x`
Điều kiện:\(\begin{cases}x^2-1 \ge 0\\x \ge 0\\\end{cases}\)
`<=>` \(\begin{cases}x^2 \ge 1\\x \ge 0\\\end{cases}\)
`<=>x>=1`
`pt<=>x^2-1=x^2`
`<=>-1=0` vô lý
Vậy pt vô nghiệm
`c)sqrt{4x-20}+3sqrt{(x-5)/9}-1/3sqrt{9x-45}=4(x>=5)`
`pt<=>sqrt{4(x-5)}+sqrt{9*(x-5)/9}-sqrt{(9x-45)*1/9}=4`
`<=>2sqrt{x-5}+sqrt{x-5}-sqrt{x-5}=4`
`<=>2sqrt{x-5}=4`
`<=>sqrt{x-5}=2`
`<=>x-5=4`
`<=>x=9(tmđk)`
Vậy `S={9}.`
`d)x-5sqrt{x-2}=-2(x>=2)`
`<=>x-2-5sqrt{x-2}+4=0`
Đặt `a=sqrt{x-2}`
`pt<=>a^2-5a+4=0`
`<=>a_1=1,a_2=4`
`<=>sqrt{x-2}=1,sqrt{x-2}=4`
`<=>x_1=3,x_2=18`,
`e)2x-3sqrt{2x-1}-5=0`
`<=>2x-1-3sqrt{2x-1}-4=0`
Đặt `a=sqrt{2x-1}(a>=0)`
`pt<=>a^2-3a-4=0`
`a-b+c=0`
`<=>a_1=-1(l),a_2=4(tm)`
`<=>sqrt{2x-1}=4`
`<=>2x-1=16`
`<=>x=17/2(tm)`
Vậy `S={17/2}`
d.
ĐKXĐ: $x\geq 2$. Đặt $\sqrt{x-2}=a(a\geq 0)$ thì pt trở thành:
$a^2+2-5a=-2$
$\Leftrightarrow a^2-5a+4=0$
$\Leftrightarrow (a-1)(a-4)=0$
$\Rightarrow a=1$ hoặc $a=4$
$\Leftrightarrow \sqrt{x-2}=1$ hoặc $\sqrt{x-2}=4$
$\Leftrightarrow x=3$ hoặc $x=18$ (đều thỏa mãn)
e. ĐKXĐ: $x\geq \frac{1}{2}$
Đặt $\sqrt{2x-1}=a(a\geq 0)$ thì pt trở thành:
$a^2+1-3a-5=0$
$\Leftrightarrow a^2-3a-4=0$
$\Leftrightarrow (a+1)(a-4)=0$
Vì $a\geq 0$ nên $a=4$
$\Leftrightarrow \sqrt{2x-1}=4$
$\Leftrightarrow x=\frac{17}{2}$
a: Ta có: \(\left(x-1\right)^3+\left(2-x\right)\left(4+2x+x^2\right)+3x\left(x+2\right)=16\)
\(\Leftrightarrow x^3-3x^2+3x-1+8-x^3+3x^2+6x=16\)
\(\Leftrightarrow9x+7=16\)
\(\Leftrightarrow9x=9\)
hay x=1
1,
a, \(\left(\dfrac{-4}{3}+\dfrac{1}{3}\right).\dfrac{5}{12}\)=-\(\dfrac{5}{12}\)
b, \(\dfrac{16}{5}+\left(\dfrac{-45}{14}\right):\dfrac{3}{28}\)
=\(\dfrac{-2}{15}\)
2,
a, 2x+19=25
=>x=3
b, \(-\dfrac{2}{9}x=\dfrac{1}{3}\)
=>x=\(\dfrac{-3}{2}\)
Bài 1:
a) Ta có: \(\dfrac{-4}{3}\cdot\dfrac{5}{12}+\dfrac{1}{3}\cdot\dfrac{5}{12}\)
\(=\dfrac{5}{12}\cdot\left(\dfrac{-4}{3}+\dfrac{1}{3}\right)\)
\(=\dfrac{-5}{12}\)
b) Ta có: \(3\dfrac{1}{5}+\left(\dfrac{2}{7}-\dfrac{7}{2}\right):\dfrac{3}{28}\)
\(=\dfrac{16}{5}+\left(\dfrac{4}{14}-\dfrac{49}{14}\right):\dfrac{3}{28}\)
\(=\dfrac{16}{5}+\dfrac{-45}{14}\cdot\dfrac{28}{3}\)
\(=\dfrac{16}{5}-30=\dfrac{-134}{5}\)
a: =>1/3x-2/5x=5
=>-1/15x=5
=>x=-75
b: =>4x=4
=>x=1
c: =>6*3^x-5*3^x=243
=>3^x=243
=>x=5
a: ĐKXĐ: x<>-1/2
\(\dfrac{x-1}{2x+1}=\dfrac{2}{3}\)
=>\(2\left(2x+1\right)=3\left(x-1\right)\)
=>\(4x+2=3x-3\)
=>\(4x-3x=-3-2\)
=>x=-5(nhận)
b: ĐKXĐ: x<>1/2
\(\dfrac{x-2}{2x-1}=\dfrac{-1}{3}\)
=>\(3\left(x-2\right)=-1\left(2x-1\right)\)
=>\(3x-6=-2x+1\)
=>\(3x+2x=1+6\)
=>5x=7
=>x=7/5(nhận)