K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
10 tháng 12 2023

Lời giải:

Vì $I$ nằm trên đường trung trực của $BC$ nên $BI=CI$
Vì $I$ nằm trên đường phân giác $\widehat{BAC}$ nên khoảng cách từ $I$ đến $AB$ bằng khoảng cách từ $I$ đến $AC$

$\Rightarrow IH=IK$

Xét tam giác vuông $IHB$ và $IKC$ có:

$IH=IK$ (cmt)

$IB=IC$ (cmt) 

$\Rightarrow \triangle IHB=\triangle IKC$ (ch-gn) 

$\Rightarrow HB=KC$ (đpcm)

AH
Akai Haruma
Giáo viên
10 tháng 12 2023

Hình vẽ:

a: \(\widehat{ACB}=90^0-60^0=30^0\)

b: Xét ΔABH và ΔKBH có 

BA=BK

BH chung

AH=KH

Do đó: ΔABH=ΔKBH

Ta có: ΔABK cân tại B

mà BI là đường trung tuyến

nên BI là đường cao

5 tháng 9 2023

chưa vẽ được

tick cho mình cái 

 

Bài tập 1

a) Chứng minh AFOE cân

Xét tam giác AOB và tam giác FOE, ta có:

  • AB = FO (do B là đỉnh chéo của hình bình hành ABCD)
  • AO = OF (do O là giao điểm của các đường chéo)
  • AE = OF (do F nằm trên cạnh BC)

Do đó, hai tam giác AOB và FOE đồng dạng theo tỉ số 1:1.

Vậy, AFOE cân tại F.

b) Trên tia đối của tòa FB lấy điểm 1 sao cho F1 = FB. Chứng minh OF = h OE == DI

Xét tam giác F1OB và tam giác FOE, ta có:

  • FB = F1B (do F1 = FB)
  • FO = OF (do O là giao điểm của các đường chéo)
  • BE = FE (do F nằm trên cạnh BC)

Do đó, hai tam giác F1OB và FOE đồng dạng theo tỉ số 1:1.

Vậy, OF = OE = DI.

c) Gia sư BAD =50. Tính EOF

Xét tam giác EOF, ta có:

  • EO = OE (do O là giao điểm của các đường chéo)
  • OF = OE = DI = 50/2 = 25

Do đó, EOF = 25^2 = 625.

Kết luận

  • AFOE cân tại F
  • OF = OE = DI = 25
  • EOF = 625

Bài tập 2

Chứng minh 1 đổi xứng với K qua Đ

Xét tam giác AFE và tam giác BKF, ta có:

  • AE = CF (do cho AE = CF)
  • AF = BF (do do A và B là các đỉnh chéo của hình bình hành ABCD)
  • EF = FB (do F nằm trên cạnh BC)

Do đó, hai tam giác AFE và BKF đồng dạng theo tỉ số 1:1.

Vậy, I đối xứng với K qua D.

Kết luận

I đối xứng với K qua D.

Bài tập 3

Chứng minh Nạp là hai điểm đối xứng nhau qua ở

Xét tam giác MNO và tam giác MNP, ta có:

  • MN = MN (đồng nhất)
  • NO = NP (do N và P lần lượt đối xứng với M qua a và b)
  • MO = MP (do O là giao điểm của các đường chéo a và b)

Do đó, hai tam giác MNO và MNP đồng dạng theo tỉ số 1:1.

Vậy, N và P là hai điểm đối xứng nhau qua O.

Kết luận

N và P là hai điểm đối xứng nhau qua O.

Chúc bạn học tốt!

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

=>AD=ED

b: Xét ΔBEF vuông tại E và ΔBAC vuông tại A có

BE=BA

góc EBF chung

=>ΔBEF=ΔBAC

=>BF=BC

2BF=BF+BC>FC

19 tháng 11 2021

a. \(A\left(2:-3\right)\in\left(d\right)\Rightarrow-3=4m-2+2m+5\)

\(\Rightarrow m=\dfrac{3}{2}\)

19 tháng 11 2021

\(3.y=\left(2m-1\right)x-2m+5\left(m\ne\dfrac{1}{2}\right)\)

\(\left(2;-3\right)\in\left(d\right)\Rightarrow-3=\left(2m-1\right).2-2m+5\Leftrightarrow m=-3\left(tm\right)\)

\(b,\left(d\right)//\left(d'\right)\Rightarrow\left\{{}\begin{matrix}2m-1=2\\-2m+5\ne1\\\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=1,5\left(tm\right)\\m\ne2\end{matrix}\right.\)

\(\Rightarrow\left(d\right):y=2x+2\)\(đi-qua-A\left(0;2\right),B\left(-1;0\right)\Rightarrow\cos\left(\alpha\right)=\dfrac{\left|OB\right|}{\left|OA\right|}=\dfrac{\left|-1\right|}{2}\Rightarrow\alpha=60^o\)

\(c,gọi-điểm-cố-định-làC\left(xo;yo\right)\Rightarrow\left(2m-1\right)xo-2m+5=yo\)

\(\Leftrightarrow2mxo-xo-2m+5-yo=0\)

\(\Leftrightarrow2m\left(xo-1\right)-xo-yo+5=0\Rightarrow\left\{{}\begin{matrix}xo=1\\yo=4\end{matrix}\right.\)

\(\Rightarrow C\left(1;4\right)là-điểm-cố-định\)

\(\)

 

18 tháng 9 2020

a) Vì tia ON là tia phân giác của góc AOC: góc NOC = góc AON = góc AOC : 2 = 150 độ : 2 = 75 độ.

Vì tia OM là tia phân giác của góc AOB nên: góc AOM = góc MOB = góc AOB : 2 = 50 độ : 2 = 25 độ.

Trên cùng một nửa mặt phẳng bờ chứa tia OA ta có: góc AON = 75 độ góc AOM = 25 độ ⇒ Góc AON > góc AOM ⇒ Tia OM nằm giữa hai tia OA và ON.

⇒ Góc AOM + góc MON = góc AON 25 độ + góc MON = 75 độ góc MON = 75 độ - 25 độ góc MON = 50 độ

b) Trên cùng một nửa mặt phẳng bờ chứa tia OM ta có: Góc MON = 50 độ Góc MOB = 25 độ ⇒ Góc MON > góc MOB ⇒ Tia OB nằm giữa hai tia OM và ON.

⇒ Góc MOB + góc BON = góc MON ⇒ 25 độ + góc BON = 50 độ ⇒ góc BON = 50 độ - 25 độ ⇒ góc BON = 25 độ

Ta có: Góc BON = góc MOB (= 25 độ) Tia OB nằm giữa hai tia OM và ON. ⇒ Tia OB là tia phân giác của góc MON.