Gíup em câu b.c ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
ΔABC nội tiếp đường tròn
BC là đường kính
Do đó: ΔABC vuông tại A
Làm biếng tính tích có hướng nên biến đổi đại số thuần túy:
Gọi \(M\left(x;y;z\right)\) là điểm bất kì thuộc đường thẳng cần tìm
\(\Rightarrow MA=MB=MC\)
\(\Rightarrow\left\{{}\begin{matrix}\left|\overrightarrow{MA}\right|=\left|\overrightarrow{MB}\right|\\\left|\overrightarrow{MB}\right|=\left|\overrightarrow{MC}\right|\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)^2+y^2+\left(z+1\right)^2=\left(x-2\right)^2+\left(y-3\right)^2+\left(z+1\right)^2\\\left(x-2\right)^2+\left(y-3\right)^2+\left(z+1\right)^2=\left(x+2\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+3y-6=0\\2x+y-z-2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+3y-6=0\\5y+z-10=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=-3\left(y-1\right)\\5\left(y-1\right)=-\left(z-5\right)\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x-3}{3}=\dfrac{y-1}{-1}\\\dfrac{y-1}{-1}=\dfrac{z-5}{5}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{x-3}{3}=\dfrac{y-1}{-1}=\dfrac{z-5}{5}\)
Nhìn đề bài và đáp án thì rõ ràng đề bài bị in sai
Cả 4 đáp án đều có dạng hàm dưới nguyên hàm là \(\dfrac{1}{sin^2\dfrac{x}{2}}\)
Trong khi đề bài lại là \(\dfrac{1}{sin\dfrac{x^2}{2}}\) (đúng thế này thì ko tính được nguyên hàm)
Kết luận: đề in ẩu, lỗi của người đánh máy
C :vì 3 ô liên tiếp = 4,5,6=15 Mà 4+8=12 =>ô thứ 3 =15-12=
Tổng ba số là :
\(\left(12363+18535+20018\right)\div2=25458.\)
Số thứ ba là :
\(25458-12363=13095\)
gọi 3 số đó lần lượt là \(a;b;c\)
theo đề bài ta có:
\(a+b=12363;b+c=18535;a+c=20018\)
\(\Rightarrow a+b+b+c+a+c=12363+18535+20018=50916\)
\(\Rightarrow2.\left(a+b+c\right)=50916\)
\(\Rightarrow a+b+c=25458\)
\(\Rightarrow12363+c=25458\)
\(\Rightarrow c=25458-12363=13095\)
vậu số thứ 3 là: \(13095\)
Khi viết thêm số \(3\)vào bên trái một số có hai chữ số thu được số mới hơn số ban đầu \(300\)đơn vị.
Nếu số ban đầu là \(1\)phần thì số mới là \(7\)phần.
Hiệu số phần bằng nhau là:
\(7-1=6\)(phần)
Số tự nhiên có hai chữ số ban đầu là:
\(300\div6\times1=50\)
b: Xét ΔBNC có DH//NC
nên \(\dfrac{DH}{NC}=\dfrac{BD}{BN}\left(1\right)\)
Xét ΔBAN có MD//AN
nên \(\dfrac{MD}{AN}=\dfrac{BD}{BN}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{DH}{NC}=\dfrac{MD}{AN}\)
=>\(\dfrac{DH}{MD}=\dfrac{NC}{AN}\)
=>\(\dfrac{MD}{DH}=\dfrac{AN}{CN}\)
c: Xét ΔCAM có NE//AM
nên \(\dfrac{NE}{AM}=\dfrac{CE}{CM}\)(3)
Xét ΔBMC có EK//BM
nên \(\dfrac{EK}{BM}=\dfrac{CE}{CM}\left(4\right)\)
Từ (3) và (4) suy ra \(\dfrac{NE}{AM}=\dfrac{EK}{BM}\)
=>\(\dfrac{NE}{EK}=\dfrac{AM}{BM}\)(5)
Xét ΔBNC có DH//NC
nne \(\dfrac{ND}{BD}=\dfrac{CH}{HB}\left(6\right)\)
Xét ΔBAC có MH//AC
nên \(\dfrac{BH}{HC}=\dfrac{BM}{MA}\)
=>\(\dfrac{HC}{BH}=\dfrac{MA}{BM}\left(7\right)\)
Từ (5),(6),(7) suy ra \(\dfrac{NE}{EK}=\dfrac{ND}{DB}\)
Xét ΔNBK có \(\dfrac{NE}{EK}=\dfrac{ND}{DB}\)
nên ED//BK
mà \(K\in\)BC
nên ED//BC