K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ABOC có

\(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)

=>ABOC là tứ giác nội tiếp

=>A,B,O,C cùng thuộc một đường tròn

b: Xét (O) có

DB,DM là các tiếp tuyến

Do đó: DB=DM

Xét (O) có

EM,EC là các tiếp tuyến

Do đó: EM=EC

Chu vi tam giác ADE là:

\(C_{ADE}=AD+DE+AE\)

\(=AD+DM+ME+AE\)

\(=AD+DB+CE+AE\)

\(=AB+AC=2\cdot AB\)

a: Xét tứ giác ABOC có \(\widehat{ABO}+\widehat{ACO}=90^0+90^0=180^0\)

nên ABOC là tứ giác nội tiếp

=>A,B,O,C cùng thuộc một đường tròn

b: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra AO là đường trung trực của BC

=>AO\(\perp\)BC tại trung điểm H của BC

Gọi K là giao điểm của OS và ED

Xét (O) có

SE,SD là các tiếp tuyến

Do đó: SE=SD

=>S nằm trên đường trung trực của ED(3)

Ta có: OE=OD

=>O nằm trên đường trung trực của ED(4)

Từ (3) và (4) suy ra SO là đường trung trực của ED

=>SO\(\perp\)ED tại trung điểm K của ED

Xét ΔOBA vuông tại B có BH là đường cao

nên \(OH\cdot OA=OB^2=R^2\left(5\right)\)

Xét ΔODS vuông tại D có DK là đường cao

nên \(OK\cdot OS=OD^2=R^2\left(6\right)\)

Từ (5) và (6) suy ra \(OH\cdot OA=OK\cdot OS\)

=>\(\dfrac{OH}{OK}=\dfrac{OS}{OA}\)

Xét ΔOHS và ΔOKA có

\(\dfrac{OH}{OK}=\dfrac{OS}{OA}\)

góc HOS chung

Do đó: ΔOHS đồng dạng với ΔOKA

=>\(\widehat{OHS}=\widehat{OKA}\)

=>\(\widehat{OHS}=90^0\)

=>HO\(\perp\)SH tại H

mà HO\(\perp\)BH tại H

và SH,BH có điểm chung là H

nên S,H,B thẳng hàng

mà H,B,C thẳng hàng

nên S,B,H,C thẳng hàng

=>S,B,C thẳng hàng

a: Xét tứ giác ABOC có

\(\widehat{ABO}+\widehat{ACO}=90^0+90^0=180^0\)

=>ABOC là tứ giác nội tiếp đường tròn đường kính OA

=>A,B,O,C cùng thuộc (I), I là trung điểm của OA

b: Xét ΔOBA vuông tại B có \(sinBAO=\dfrac{BO}{OA}=\dfrac{1}{2}\)

nên \(\widehat{BAO}=30^0\)

Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AO là phân giác của góc BAC

=>\(\widehat{BAC}=2\cdot\widehat{BAO}=60^0\)

Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

Xét ΔABC có AB=AC và \(\widehat{BAC}=60^0\)

nên ΔABC đều

c: Ta có: ΔBOA vuông tại B

=>\(\widehat{BOA}+\widehat{BAO}=90^0\)

=>\(\widehat{BOA}=90^0-30^0=60^0\)

Xét ΔBIO có IO=IB

nên ΔIBO cân tại I

Xét ΔIBO cân tại I có \(\widehat{IOB}=60^0\)

nên ΔIBO đều

=>BI=OI=R

=>\(I\in\left(O\right)\)

Ta có: BI=R

mà BI=CI

nên CI=R

=>OB=BI=CI=OC

=>OBIC là hình thoi

=>BI//OC

a: Xét tứ giác OACM có

\(\widehat{OAC}+\widehat{OMC}=90^0+90^0=180^0\)

=>OACM là tứ giác nội tiếp

=>O,A,C,M cùng thuộc một đường tròn

b: Xét (O) có

CA,CM là tiếp tuyến

Do đó: CA=CM

=>C nằm trên đường trung trực của AM(1)

OA=OM

=>O nằm trên đường trung trực của AM(2)

Từ (1) và (2) suy ra OC là đường trung trực của AM

=>OC\(\perp\)AM

Xét (O) có

ΔAMB nội tiếp

AB là đường kính

Do đó: ΔAMB vuông tại M

=>AM\(\perp\)MB tại M

Ta có: AM\(\perp\)MB

AM\(\perp\)OC

Do đó: OC//MB

c: Xét (O) có

ΔAKB nội tiếp

AB là đường kính

Do đó: ΔAKB vuông tại K

=>KB\(\perp\)KA tại K

=>AK\(\perp\)BC tại K

Xét ΔABC vuông tại A có AK là đường cao

nên \(BK\cdot BC=BA^2=\left(2R\right)^2=4R^2\)

4 tháng 12 2023

vẽ hình và làm bài trên

18 tháng 7 2020

A D B O E C M

Theo tính chất hai tiếp tuyến cắt nhau ta có:

    DM = DB, EM = EC ,  AB = AC

Chu vi  \(\Delta ADE\):

    \(C_{\Delta ADE}\) = AD + DE + AE = AD + DM + ME + AE = AD + DB + EC + AE = AB + AC = 2AB ( đpcm )

25 tháng 4 2017

Chứng minh AB=AC; DB=DM và EC=EM.

Chu vi ΔADE bằng

= AD + DM + ME + AE

= AD + DB + EC + AE

= AB + AC

 = 2AB.


 

25 tháng 4 2017

dap_hinh-bai27

Ta có AB = AC; DB = DM;
EC = EM.
Chu vi Δ ADE:
AD +AE +DE = AD +DM + AE + EM
=AD + DB + AE + EC = AB + AC = 2AB

21 tháng 7 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

Theo tính chất hai tiếp tuyến cắt nhau ta có:

    DM = DB, EM = EC, AB = AC

Chu vi ΔADE:

    CΔADE = AD + DE + AE = AD + DM + ME + AE = AD + DB + EC + AE = AB + AC = 2AB (đpcm)

25 tháng 4 2017

Chứng minh AB=AC; DB=DM và EC=EM.

Chu vi ΔADE=ΔADE

= AD + DM + ME + AE

= AD + DB + EC + AE

= AB + AC + 2AB.