Cho hai đường thẳng xx' và yy' cắt nhau tại O , biết \(\widehat{xOy}\) = \(50^0\).
a ) Tính các góc còn lại ? Giải thích ?
b ) Trong ba tia Ox ; Oy; Ox' tia nào nằm giữa hai tia còn lại ? Giải thích ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: xx' cắt yy' tại O
\(\widehat{xOy}=\widehat{x'Oy'}\)(hai góc đối đỉnh)
mà \(\widehat{xOy}=60^0\)
nên \(\widehat{x'Oy'}=60^0\)
\(\widehat{xOy}+\widehat{xOy'}=180^0\)(hai góc kề bù)
=>\(\widehat{xOy'}=180^0-60^0=120^0\)
\(\widehat{xOy'}=\widehat{x'Oy}\)(hai góc đối đỉnh)
mà \(\widehat{xOy'}=120^0\)
nên \(\widehat{x'Oy}=120^0\)
Vì x'Oy' đối đỉnh với xOy
Nên x'Oy' = xOy = 500
Vì Oz là tia phân giác của x'Oy'
Nên y'Oz =\(\frac{1}{2}\)x'Oy' => y'Oz = 500.\(\frac{1}{2}\)=250
Vì xOy' và xOy là 2 góc kề bù
Nên xOy' + xOy = 1800
Hay xOy' + 500 = 1800
Suy ra xOy' = 1800-500 = 1300
Vì tia Oy' nằm giữa 2 tia Ox và Oz
Nên xOy' + y'Oz = xOz
Hay 1300+250=xOz
Suy ra xOz=1300+250
Vậy xOz=1550
vì Ot là tia phân giác của góc xOy nên : xOy/2 = 500/2 =250
1.
Giải: a) Ta có: \(\widehat{xOy}+\widehat{yOx'}=180^0\) (kề bù)
=> \(\widehat{yOx'}=180^0-\widehat{xOy}=180^0-75^0=105^0\)
Ta lại có: \(\widehat{xOy}=\widehat{x'Oy'}\) (đối đỉnh)
Mà \(\widehat{xOy}=75^0\) => \(\widehat{x'Oy'}=75^0\)
\(\widehat{yOx'}=\widehat{xOy'}\) (đối đỉnh)
Mà \(\widehat{yOx'}=105^0\) => \(\widehat{xOy'}=105^0\)
1b) Ta có: \(\widehat{xOy}+\widehat{x'Oy}=180^0\) (kề bù)
mà \(\widehat{x'Oy}-\widehat{xOy}=30^0\)
=> \(2.\widehat{x'Oy}=210^0\)
=> \(\widehat{x'Oy}=210^0:2=105^0\) => \(\widehat{x'Oy}=\widehat{xOy'}=105^0\) (đối đỉnh)
=> \(\widehat{xOy}=180^0-105^0=75^0\) => \(\widehat{xOy}=\widehat{x'Oy'}=75^0\) (đối đỉnh)
2.
Giải: a) Ta có: \(\widehat{xOm}=\widehat{x'Om'}\) (đối đỉnh)
\(\widehat{mOy}=\widehat{m'Oy'}\) (đối đỉnh)
Mà \(\widehat{xOm}=\widehat{mOy}\) (gt)
=> \(\widehat{x'Om'}=\widehat{m'Oy'}\)
Ta lại có: \(\widehat{xOy}=\widehat{x'Oy'}\) (đối đỉnh)
Mà \(\widehat{xOm}=\widehat{mOy}=\frac{1}{2}.\widehat{xOy}\) (vì Om là tia p/giác)
=> \(\widehat{x'Om'}=\widehat{m'Oy'}=\frac{1}{2}.\widehat{xOy}\)
=> Om' nằm giữa Ox' và Oy'
=> Om' là tia p/giác của góc x'Oy'
b) Tự viết