Cho 4 số ịư nhiên a;b;c;d khi chia cho 5 có số dư khác nhau. Chứng minh a+b+c+d chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Gọi ba số tự nhiên liên tiếp là : k,k+1,k+2 (k thuộc N)
Ta có :k+(k+1)+(k+2)
<=>3k+3 chia hết cho 3
=>Tổng 3 số tự nhiên liên tiếp chia hết cho 3
b, gọi 4 số tự nhiên liên tiếp là : k,k+1,k+2,k+3(k thuộc N)
Ta có:k+(k+1)+(k+2)+(k+3)
<=>4k+6 không chia hết cho 4
=> Tổng 4 số tự nhiên liên tiếp không chia hết cho 4
c,ĐỀ SAI
\(a:72\) dư 24 \(\Rightarrow a⋮48\)
Mà \(48⋮2;48⋮3;48⋮6\)
\(\Rightarrow a⋮2;a⋮3;a⋮6\)
Đáp án B
Gọi là số cần tìm, để số này chia hết cho 4 thì ta phải có chia hết cho 4.
Có số tự nhiên có 4 chữ số tạo từ .
Ta thấy chỉ có các số là chia hết cho 4.
Do đó chọn có 7 cách, chọn a có 6 cách, chọn b có 7 cách nên có
Vậy xác suất cần tính là
a)
gọi 3 STN liên tiếp là a ;a+1;a+2
=>a+a+1+a+2=a+a+a+1+2=3a+3=3(a+1) chia hết cho 3
=> .. có
b)
gọi 4 STN liên tiếp là a;a+1;a+2;a+3
=>a+a+1+a+2+a+3=a+a+a+a+6=4a+6
=> ko chia hết cho 4
1. a chia cho 12 dư 8
=>a=12.k+8
=> a chia hết cho 4(vì cả 2 12.k và 8 đều chia hết cho 4)
a không chia hết cho 6 vì số 12.k chia hết cho 6 và 8 không chia hết cho 6.