Cho a thuộc Z . Chứng tỏ rằng
a.a\(^2\)>0 ; -a\(^2\)< 0
b.Tìm giá trị nhỏ nhất của
A = (x-8)\(^2\)+ 2003
c.Tìm giá trị nhỏ nhất
B= -(x+5)\(^2\)+9
d.Tìm giá trị nhỏ nhất
C=( x-2)\(^2\)+ (y -1) + 2012
e.Tìm gí trị lớn nhất của
E = -(x-21)\(^2\)+99
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Vì: a>2 => a=2+m
b>2 => b=2+n (m, n thuộc N*)
=> a+b= (2+m) +(2+n)
a.b= (2+m). (2+n)
= 2(2+n)+ m(2+n)
= 4+ 2n+ 2m+ mn
= 4+ m+ m+ n+ n+ mn
= (4+ m+ n) +(m +n +mn)
= (2+ m) +(2+ n) + (m+ n+ mn) > (2+ m)+ (2+n)
=> a.b > a+b .dpcm
~ Hok tốt ~
1)\(\hept{\begin{cases}a>2\\b>2\end{cases}}\Rightarrow\hept{\begin{cases}\frac{1}{a}< \frac{1}{2}\\\frac{1}{b}< \frac{1}{2}\end{cases}}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}< 1\Leftrightarrow\frac{a+b}{ab}< 1\Leftrightarrow a+b< ab\)
2) \(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow\frac{a^2}{ab}+\frac{b^2}{ab}\ge2\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge2\left(đpcm\right)\)
a, vì x-y >0 nên x>0+y (chuyển -y từ vế trái sang vế phải) hay x>y
b, tương tự thôi (giống như phần a)
tick nha Ngọc ! (>^_^<)
a) Ta có:
x - y > 0
\(\Rightarrow\)x - y là số nguyên dương nên x = y + q ( q \(\in\)N* )
\(\Rightarrow\)x > y ( đpcm )
b tương tự nha
ttheo bai ra thi ; x-y>0 => x-y la so nguyÊn dưong nên x=y+q ( q la so nguyen duong)
=>. x>y
b) theo bai thi x>y suy ra x-y la 1 so nguyen duong nen x-y>0
k cho mik nhoa~
\(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1-n}{n.\left(n+1\right)}=\frac{1}{n.\left(n+1\right)}\)
\(\frac{1}{n}.\frac{1}{n+1}=\frac{1}{n.\left(n+1\right)}\)
Vậy \(\frac{1}{n};\frac{1}{n+1}\)có hiệu và tích bằng nhau
\(\frac{1}{n}\cdot\frac{1}{n+1}=\frac{1}{n\left(n+1\right)}\)
\(=\frac{\left(n+1\right)-n}{n\left(n+1\right)}\)
\(=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}\)
\(=\frac{1}{n}-\frac{1}{n+1}\)(đpcm)
Cho mik xin tk