Cho x,y thỏa mãn x+y=1
Tính giá trị biểu thức x^3+y^3+3xy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x2+y=y2+x
=>x2+y-y2+x=0
=>(x2-y2)-(x-y)=0
=>(x-y)(x+y)-(x-y)=0
=>(x-y)(x+y-1)=0
=>x-y=0 hoặc x+y-1=0
=>x+y=1(TH1 loại do x khác y)
ta có:A=x3+y3+3xy(x2+y2)+6x2y2(x+y)
=>A=(x+y)(x2-xy+y2)+3x3y+3xy3+6x2y2
=>A=x2-xy+y2+3x3y+3xy3+6x2y2
=>A=(x+y)2-3xy+3x2y(x+y)+3xy2(x+y)
=>A=1-3xy+3x2y+3xy2
=>A=1+3xy(-1+a+b)
=>A=1+3xy(-1+1)
=>A=1+3xy.0
=>A=1
Vậy A=1 khi x2+y=y2+x và x khác y.
x3+y3=x3+3x2y+3xy2+y2+3xy-3x2y-3xy2
=(x+y)3+3xy.(1-x-y)
=(x+y)3+3xy.[1-(x+y)]
=13+3xy.(1-1)
=1
\(P=x^3+3xy+y^3=x^3+3xy\left(x+y\right)+y^3=\left(x+y\right)^3=1^3=1\)
a) cho x+y=1. Tính giá trị biểu thức x^3+ y^3+ 3xy
b) cho x-y=1. Tính giá trị biểu thức x^3- y^3- 3xy
x^3+ y^3+ 3xy
=(x+y)(x^2 -xy + y^2 ) + 3xy
=x^2 -xy + y^2 + 3xy
=x^2 + 2xy + y^2
=(x+y)^2 =1
=> x^3+ y^3+ 3xy=1
Từ x+y=1 (GT)
=>(x+y)3=13=1
=>x3+3x2y+3xy2+y3=1 (HĐT)
=>x3+y3+3xy(x+y)=1
=>x3+y3+3xy*1=1
=>x3+y3+3xy=1
13 = (\(x+y\))3 = \(x^3\) + 3\(x^2\)y + 3\(xy^2\) + y3 = \(x^3\)+y3+3\(xy\)(\(x+y\))
1 = \(x^3\)+y3+3\(xy\)
13 = (\(x-y\))3 = \(x^3\) - 3\(x^2\)y + 3\(xy\) - y3 = \(x^3\) - y3 - 3\(xy\)(\(x-y\))
1 = \(x^3\) - y3 - 3\(xy\)
X3 + Y3 = X3 + 3X2Y + 3 XY2+ Y2+ 3XY - 3 X2Y- 3XY2
=(x + y )3 + 3xy. ( 1 - x - y )
=( x + y)3 + 3xy . [ 1 - (x - y) ]
= 13 + 3xy. ( 1-1)
=1
mik cũng ko chắc nữa nhé
Ta có :x3 +y3 +3xy=(x+y)(x2 -xy+y2)+3xy
mà x+y=1
=>x2 -xy+y2+3xy=x2 +2xy+y2 =(x+y)2=12 =1