Bảng 3P.1 thể hiện kết quả đo đường kính của một viên bi thép bằng thước kẹp có sai số dụng cụ là 0,02 mm. Tính sai số tuyệt đối và biểu diễn kết quả phép đo có kèm theo sai số.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giá trị trung bình khối lượng của túi trái cây là:
\(\overline m = \frac{{{m_1} + {m_2} + {m_3} + {m_4}}}{4} = \frac{{4,2 + 4,4 + 4,4 + 4,2}}{4} = 4,3(kg)\)
Sai số tuyệt đối ứng với mỗi lần đo là:
\(\begin{array}{l}\Delta {m_1} = \left| {\overline m - {m_1}} \right| = \left| {4,3 - 4,2} \right| = 0,1(kg)\\\Delta {m_2} = \left| {\overline m - {m_2}} \right| = \left| {4,3 - 4,4} \right| = 0,1(kg)\\\Delta {m_3} = \left| {\overline m - {m_3}} \right| = \left| {4,3 - 4,4} \right| = 0,1(kg)\\\Delta {m_4} = \left| {\overline m - {m_4}} \right| = \left| {4,3 - 4,2} \right| = 0,1(kg)\end{array}\)
Sai số tuyệt đối trung bình của phép đo:
\(\overline {\Delta m} = \frac{{\Delta {m_1} + \Delta {m_2} + \Delta {m_3} + \Delta {m_4}}}{4} = \frac{{0,1 + 0,1 + 0,1 + 0,1}}{4} = 0,1(kg)\)
Sai số tuyệt đối của phép đo là:
\(\Delta m = \overline {\Delta m} + \Delta {m_{dc}} = 0,1 + 0,1 = 0,2(kg)\)
Sai số tương đối của phép đo là:
\(\delta m = \frac{{\Delta m}}{{\overline m }}.100\% = \frac{{0,2}}{{4,2}}.100\% = 4,65\% \)
Kết quả phép đo:
\(m = \overline m \pm \Delta m = 4,3 \pm 0,2(kg)\)
Các em thực hành theo hướng dẫn của giáo viên.
Ví dụ cho kết quả thí nghiệm
Bảng 6.1
Quãng đường: s = 0,5 (m)
- Tốc độ trung bình: \(\overline v = \frac{s}{{\overline t }} = \frac{{0,5}}{{0,778}} = 0,643(m/s)\)
- Sai số:
\(\begin{array}{l}\overline {\Delta t} = \frac{{\Delta {t_1} + \Delta {t_2} + ... + \Delta {t_n}}}{n} = \frac{{0,001 + 0,002 + 0,002}}{3} \approx 0,002(s)\\\delta t = \frac{{\overline {\Delta t} }}{{\overline t }}.100\% = \frac{{0,002}}{{0,778}}.100\% = 0,3\% \\\delta s = \frac{{\overline {\Delta s} }}{s}.100\% = \frac{{0,0005}}{{0,5}}.100\% = 0,1\% \\\delta v = \delta s + \delta t = 0,1\% + 0,3\% = 0,4\% \\\Delta v = \delta v.\overline v = 0,4\% .0,643 = 0,003\\ \Rightarrow v = 0,643 \pm 0,003(m/s)\end{array}\)
Bảng 6.2
Đường kính của viên bi: d = 0,02 (m); sai số: 0,02 mm = 0,00002 (m)
- Tốc độ tức thời: \(\overline v = \frac{d}{{\overline t }} = \frac{{0,02}}{{0,032}} = 0,625(m/s)\)
- Sai số:
\(\begin{array}{l}\overline {\Delta t} = \frac{{\Delta {t_1} + \Delta {t_2} + ... + \Delta {t_n}}}{n} = \frac{{0,001 + 0 + 0,00}}{3} \approx 0,001(s)\\\delta t = \frac{{\overline {\Delta t} }}{{\overline t }}.100\% = \frac{{0,001}}{{0,032}}.100\% = 2,1\% \\\delta s = \frac{{\overline {\Delta s} }}{s}.100\% = \frac{{0,00002}}{{0,02}}.100\% = 0,1\% \\\delta v = \delta s + \delta t = 0,1\% + 2,1\% = 2,2\% \\\Delta v = \delta v.\overline v = 2,2\% .0,0032 = 0,001\\ \Rightarrow v = 0,625 \pm 0,014(m/s)\end{array}\)
Nhận xét: Tốc độ trung bình gần bằng tốc độ tức thời, vì viên bi gần như chuyển động đều.
a. Sai số tuyệt đối và sai số tỷ đối:
Ta tính tổng độ sai số của các giá trị đo lượng thực như sau:
Sai sốĐộ sai số
0 | 200mm |
0 | 200mm |
1 | 199mm |
5 | 200,05mm |
1 | 199,05mm |
Tổng độ sai số = 0 + 0 + 1 + 5 + 1 = 7
Giá trị thực là 550mm, vậy sai số tuyệt đối = |550 - 500| = 100.
Tỷ đối sai số = (7/1000) x 100 = 0.7%.
b. Kết quả phép đo:
Sai số tuyệt đối: 100mmSai số tỷ đối: 0.7%Vậy kết quả phép đo của chiều dài quyển sổ là 550mm với sai số tuyệt đối là 100mm và sai số tỷ đối là 0.7%.
a. Sai số tuyệt đối (MAD) và sai số tỷ đối (MAPE) được tính như sau:
Phép đo thực tế (TTT): 200,1mm, 200mm, 199mm, 200,05mm, 199,05mm
Phép đo lý thuyết (TDT): 200mm, 200mm, 200mm, 200mm, 200mm, 200mm
MAD = |(TTT - TDT)| = |(200,1 - 200), (200 - 200), (199 - 200), (200,05 - 200), (199,05 - 200)| = (0,1), 0, 1, 0, 1, 1 mm
MAPE = |(TTT - TDT)/TTT)|*100 = |(200,1 - 200)/200,1), (200 - 200)/200), (199 - 200)/199), (200,05 - 200)/200,05), (199,05 - 200)/199,05)|*100 = 0,05%, 0%, 0,05%, 0,05%, 0,05%
b. Kết quả phép đo:
Độ lỗi tuyệt đối tối đa: 1,1 mm (từ 0,1 mm tới 1,1 mm)Độ lỗi tỷ đối tối đa: 0,05% (từ 0% tới 0,05%)Vậy độ lỗi tuyệt đối và tỷ đối tối đa của phép đo đo chiều dài quyển sách 5 lần là:
Độ lỗi tuyệt đối tối đa: 1,1 mmĐộ lỗi tỷ đối tối đa: 0,05%
Giá trị trung bình của đường kính viên bi thép là:
\(\overline d = \frac{{{d_1} + {d_2} + ... + {d_9}}}{9} \approx 6,33(mm)\)
Sai số tuyệt đối ứng với mỗi lần đo là:
\(\begin{array}{l}\Delta {d_1} = \left| {\overline d - {d_1}} \right| = \left| {6,33 - 6,32} \right| = 0,01(mm) = \Delta {d_2} = \Delta {d_3} = \Delta {d_4} = \Delta {d_7} = \Delta {d_9}\\\Delta {d_5} = \left| {\overline d - {d_5}} \right| = \left| {6,33 - 6,34} \right| = 0,01(mm) = \Delta {d_6} = \Delta {d_8}\end{array}\)
Sai số tuyệt đối trung bình của phép đo:
\(\overline {\Delta d} = \frac{{\Delta {d_1} + \Delta {d_2} + ... + \Delta {d_9}}}{9} = 0,01(mm)\)
Sai số tuyệt đối của phép đo là:
\(\Delta d = \overline {\Delta d} + \Delta {d_{dc}} = 0,01 + 0,02 = 0,03(mm)\)