K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(C=\dfrac{5-x^2}{x^2+3}=\dfrac{-x^2-3+8}{x^2+3}=-1+\dfrac{8}{x^2+3}\)

Ta có: \(x^2>=0\forall x\)

=>\(x^2+3>=3\forall x\)

=>\(\dfrac{8}{x^2+3}< =\dfrac{8}{3}\forall x\)

=>\(\dfrac{8}{x^2+3}-1< =\dfrac{8}{3}-1=\dfrac{5}{3}\forall x\)

=>\(C< =\dfrac{5}{3}\forall x\)

Dấu '=' xảy ra khi x2=0

=>x=0

Vậy: \(C_{Max}=\dfrac{5}{3}\) khi x=0

24 tháng 9 2023

a, Vì \(\left(x-2\right)^2\ge0\) nên \(A=\left(x-2\right)^2+24\ge24\)

Dấu '=' xảy ra khi và chỉ khi: \(\left(x-2\right)^2=0\Leftrightarrow x=2\)

Vậy GTNN của A là 24 khi x=2.

b,Vì \(-x^2\le0\) nên \(B=-x^2+\dfrac{13}{5}\le\dfrac{13}{5}\)

Dấu '=' xảy ra khi và chỉ khi: \(-x^2=0\Leftrightarrow x=0\)

Vậy GTLN của B là \(\dfrac{13}{5}\) khi x=0

23 tháng 9 2023

Ai trả lời nhanh và đúng mik give tick xanh nhé.

 

13 tháng 7 2021

mọi người ơi giúp mình trả lồi câu hỏi này vớiiiiiiiiiiii

27 tháng 7 2021

1, \(4x^2-4x+3=\left(2x-1\right)^2+2\ge2\)

Dấu ''='' xảy ra khi x = 1/2

Vậy GTNN biểu thức trên là 2 khi x = 1/2 

2, \(-x^2+10x-30=-\left(x^2-10x+25+5\right)=-\left(x-5\right)^2-5\le-5\)

Dấu ''='' xảy ra khi x = 5 

Vậy GTLN biểu thức trên là -5 khi x = 5

3, \(x^2-x+1=x^2-x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu ''='' xayr ra khi x = 1/2 

Vậy GTNN biểu thức là 3/4 khi x = 1/2 

4, \(25x^2+10x=25x^2+10x+1-1=\left(5x+1\right)^2-1\ge-1\)

Dấu ''='' xảy ra khi x = -1/5

Vậy GTNN biểu thức trên là -1 khi x = -1/5

6, \(-x^2+8x+5=-\left(x^2-8x-5\right)=-\left(x^2-8x+16-21\right)\)

\(=-\left(x-4\right)^2+21\le21\)

Dấu ''='' xảy ra khi x = 4

Vậy GTLN biểu thức trên là 21 khi x = 4

27 tháng 7 2021

Trả lời:

1, \(4x^2-4x+3=4x^2-4x+1+2=\left(2x-1\right)^2+2\ge2\forall x\)

Dấu "=" xảy ra khi 2x - 1 = 0 <=> x = 1/2

Vậy GTNN của bt = 2 khi x = 1/2

2, \(-x^2+10x-30=-\left(x^2-10x+30\right)=-\left(x^2-10x+25+5\right)=-\left[\left(x-5\right)^2+5\right]\)

\(=-\left(x-5\right)^2-5\le-5\forall x\)

Dấu "=" xảy ra khi x - 5 = 0 <=> x = 5

Vậy GTLN của bt = - 5 khi x = 5

3, \(25x^2+10x=25x^2+10x+1-1=\left(5x+1\right)^2-1\ge-1\forall x\)

Dấu "=" xảy ra khi 5x + 1 = 0 <=> x = - 1/5 

Vậy GTNN của bt = - 1 khi x = - 1/5

4, \(x^2-x+1=x^2-2x\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

Dấu "=" xảy ra khi x - 1/2 = 0 <=> x = 1/2

Vậy GTNN của bt = 3/4 khi x = 1/2

5, \(8x-x^2+5=-\left(x^2-8x-5\right)=-\left(x^2-8x+16-21\right)=-\left[\left(x-4\right)^2-21\right]\)

\(=-\left(x-4\right)^2+21\le21\forall x\)

Dấu "=" xảy ra khi x - 4 = 0 <=> x = 4

Vậy GTLN của bt = 21 khi x = 4

\(B=2\left(x^2-x+\dfrac{5}{2}\right)\)

\(=2\left(x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{9}{4}\right)\)

\(=2\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{2}>=\dfrac{9}{2}\)

Dấu '=' xảy ra khi x=1/2

30 tháng 8 2017

x^2 -6x +10 = x^2 -2.x.3 +3^2 +1 = (x-3)^2 +1 
Ma (x-3)^2 >=0 <=> (x-3)^2 +1 >=1>0 (voi moi x) 
b) 4x - x^2 -5 = -(x^2 -4x +5) =-[(x^2 -4x +4)+1] = -[(x-2)^2 +1] 
Ma (x+2)^2 >=0 <=> (x-2)^2 +1 >=1 <=> -[(x-2)^2 +1] <=-1 => -[(x-2)^2 +1] <0 
2) a) P= x^2 -2x +5 = x^2 -2x +1 +4 = (x-1)^2 +4 
Ta co: (x-1)^2 >=0 <=> (x-1)^2 +4 >=4 
Vay gia tri nho nhat P=4 khi x=1 
b) Q= 2x^2 -6x = 2(x^2 -3x) = 2(x^2 - 2.x.3/2 + 9/4 -9/4)= 2[(x-3/2)^2 -9/4] 
Ta co: (x-3/2)^2 >=0 <=>(x-3/2)^2 -9/4 >= -9/4 <=> 2[(x-3/2)^2 -9/4] >= -9/2 
Vay gia tri nho nhat Q= -9/2 khi x= 3/2 
c) M= x^2 +y^2 -x +6y +10 = (x^2 -2.x.1/2 + 1/4) +(y^2 +2.y.3+9)+3/4 
= ( x-1/2)^2 + (y+3)^2 +3/4 
M>= 3/4 
Vay GTNN cua M = 3/4 khi x=1/2 va y=-3 
3)a) A= 4x - x^2 +3 = -(x^2 -4x -3) = -( x^2 -4x+4 -7) =-[(x-2)^2 -7] 
Ta co: (x-2)^2>=0 <=> (x-2)^2 -7 >=-7 <=> -[(x-2)^2 -7] <=7 
Vay GTLN A=7 khi x=2 
b) B= x-x^2 = -(x^2 -2.x.1/2+1/4-1/4) = -[(x-1/2)^2 -1/4] 
GTLN B= 1/4 khi x=1/2 
c) N= 2x - 2x^2 -5 =-2( x^2 -x+5/2) = -2(x^2 - 2.x.1/2 +1/4 +9/4) 
= -2[(x-1/2)^2 +9/4] 
GTLN N= -9/2 khi x=1/2