(6x+12)(-x-3)=0)
giúp ((((((
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
8) \(\left(x+4\right)\left(6x-12\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+4=0\\6x-12=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-4\\6x=12\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-4\\x=2\end{cases}}}\)
Vậy \(x\in\left\{-4;2\right\}\)
11) \(\left(\frac{7}{8}-2x\right)\left(3x+\frac{1}{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{7}{8}-2x=0\\3x+\frac{1}{3}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=\frac{7}{8}-0\\3x=-\frac{1}{3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=\frac{7}{8}\\x=-\frac{1}{9}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{7}{16}\\x=-\frac{1}{9}\end{cases}}}\)
Vậy \(x\in\left\{\frac{7}{16};-\frac{1}{9}\right\}\)
12) \(3x-2x^2=0\)
\(\Leftrightarrow x\left(3-2x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)
Vậy \(x\in\left\{0;\frac{3}{2}\right\}\)
13) \(5x+10x^2=0\)
\(\Leftrightarrow5x\left(1+2x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{1}{2}\end{cases}}\)
Vậy \(x\in\left\{0;-\frac{1}{2}\right\}\)
1/ \(x^4+x^2-2=0\)
\(\Leftrightarrow\left(x^2\right)^2-x^2+2x^2-2=0\\ \Leftrightarrow x^2\left(x^2-1\right)+2\left(x^2-1\right)=0\\ \Leftrightarrow\left(x^2+2\right)\left(x^2-1\right)=0\\ \Leftrightarrow\left(x^2+2\right)\left(x-1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2+2=0\\x+1=0\\x-1-0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
2/ \(x^3+3x^2+6x+4=0\)
\(\Leftrightarrow\left(x^3+x^2\right)+\left(2x^2+2x\right)+\left(4x+4\right)=0\\ \Leftrightarrow x^2\left(x+1\right)+2x\left(x+1\right)+4\left(x+1\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x^2+2x+4\right)=0\)
\(\Leftrightarrow x+1=0\) (do \(x^2+2x+4=\left(x+1\right)^2+3>0,\forall x\))
\(\Leftrightarrow x=-1\).
3/ \(x^3-6x^2+8x=0\)
\(\Leftrightarrow x\left(x^2-6x+8\right)=0\\ \Leftrightarrow x\left[\left(x^2-2x\right)-\left(4x-8\right)\right]=0\\ \Leftrightarrow x\left[x\left(x-2\right)-4\left(x-2\right)\right]=0\\ \Leftrightarrow x\left(x-2\right)\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=4\end{matrix}\right.\)
4/ \(x^4-8x^3-9x^2=0\)
\(\Leftrightarrow x^2\left(x^2-8x-9\right)=0\\ \Leftrightarrow x^2\left(x^2-9x+x-9\right)=0\\ \Leftrightarrow x^2\left(x\left(x-9\right)+\left(x-9\right)\right)=0\\ \Leftrightarrow x^2\left(x+1\right)\left(x-9\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2=0\\x+1=0\\x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=9\end{matrix}\right.\)
Bài làm
a) ( 2x + 1 )( x - 1 ) = 0
=> 2x + 1 = 0 hoặc x - 1 = 0
=> 2x = -1/2 hoặc x = 1
Vậy x = -1/2 hoặc x = 1.
b) 1/2x + 3 + x = 12
3/2x + 13 = 12
3/2x = -1
x = -1 : 3/2
x = -2/3
Vậy x = -2/3
~ Đag dùng đt nên bấm hơi khó, câu c tính kq của 8.27 rồi tính bình thg, câu d lầ 12 : 4 rồi lấy kq của 12 : 4 nhân cho 7. rồi ta sẽ có 6x - 36 = 21 sau đó tính bthg ~
# Học tốt #
Bài 1:
a) \(x^3-16x=x\left(x-4\right)\left(x+4\right)\)
b) \(3x^2+3y^2-6xy-12=3\left(x^2-2xy+y^2-4\right)=3\left(x-y-2\right)\left(x-y+2\right)\)
c) \(x^2+6x+5=\left(x+1\right)\left(x+5\right)\)
d) \(x^4+x^3+2x^2+x+1=\left(x^2+x+1\right)\left(x^2+1\right)\)
Bài 2:
a) Ta có: \(\left(x+6\right)^2=144\)
\(\Leftrightarrow\left[{}\begin{matrix}x+6=12\\x+6=-12\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-18\end{matrix}\right.\)
b) Ta có: \(x^3+27+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\)
\(\Leftrightarrow x\left(x+3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=2\end{matrix}\right.\)
c) Ta có: \(2x^2-x-6=0\)
\(\Leftrightarrow2x^2-4x+3x-6=0\)
\(\Leftrightarrow2x\left(x-2\right)+3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{3}{2}\end{matrix}\right.\)
7)(16-8x)(2-6x)=0
=> 16 - 8x = 0 hoặc 2 - 6x = 0
=> 16 = 8x hoặc 2 = 6x
=> x = 2 hoặc x = 1/3
8) (x+4)(6x-12)=0
=> x + 4 = 0 hoặc 6x - 12 = 0
=> x = -4 hoặc x = 2
9) (11-33x)(x+11)=0
=> 11 - 33x = 0 hoặc x + 11 = 0
=> x = 1/3 hoặc x = -11
10) (x-1/4)(x+5/6)=0
=> x - 1/4 = 0 hoặc x + 5/6 = 0
=> x = 1/4 hoặc x = -5/6
11) (7/8-2x)(3x+1/3)=0
=> 7/8 - 2x = 0 hoặc 3x + 1/3 = 0
=> 2x = 7/8 hoặc 3x = -1/3
=> x = 7/16 hoặc x = -1/9
12)3x-2x^2=0
=> x(3 - 2x) = 0
=> x = 0 hoặc 3 - 2x = 0
=> x = 0 hoặc x = 3/2
\(a,\left(16-8x\right)\left(2-6x\right)=0\)
\(\hept{\begin{cases}16-8x=0\\2-6x=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\x=\frac{1}{3}\end{cases}}}\)
\(b,\left(x+4\right)\left(6x-12\right)=0\)
\(\hept{\begin{cases}x+4=0\\6x-12=0\end{cases}\Rightarrow\hept{\begin{cases}x=-4\\x=2\end{cases}}}\)
\(c,\left(11-33x\right)\left(x+11\right)=0\)
\(\hept{\begin{cases}11-33x=0\\x+11=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\\x=-11\end{cases}}}\)
\(d,\left(x-\frac{1}{4}\right)\left(x+\frac{5}{6}\right)=0\)
\(\hept{\begin{cases}x-\frac{1}{4}=0\\x+\frac{5}{6}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{4}\\x=-\frac{5}{6}\end{cases}}}\)
\(e,\left(\frac{7}{8}-2x\right)\left(3x+\frac{1}{3}\right)=0\)
\(\hept{\begin{cases}\frac{7}{x}-2x=0\\3x+\frac{1}{3}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{7}{4}\\x=-\frac{1}{9}\end{cases}}}\)
\(f,3x-2x^2=0\)
\(x\left(3-2x\right)=0\)
\(\hept{\begin{cases}x=0\\3-2x=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}}\)
\(Q\left(x\right)-P\left(x\right)=0\)
\(\Leftrightarrow\left(-6x^2+x^3-8+12\right)-\left(x^3-3x^2+6x-8\right)=0\)
\(\Leftrightarrow\left(-6x^2+x^3+4\right)-\left(x^3-3x^2+6x-8\right)=0\)
\(\Leftrightarrow-6x^2+x^3+4-x^3+3x^2-6x+8=0\)
\(\Leftrightarrow-3x^2-6x+12=0\)
\(\Leftrightarrow-3\left(x^2+2x-4\right)=0\)
\(\Leftrightarrow x^2+2x-4=0\)
\(\Leftrightarrow x^2+2x+1=5\)
\(\Leftrightarrow\left(x+1\right)^2=5\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=\sqrt{5}\\x+1=-\sqrt{5}\end{cases}}\Leftrightarrow x=\pm\sqrt{5}-1\)
\(P\left(x\right)-Q\left(x\right)=\left(x^3-3x^2+6x-8\right)-\left(-6x^2+x^3-8+12\right)\)
\(P\left(x\right)-Q\left(x\right)=\left(x^3-3x^2+6x-8\right)-\left(-6x^2+x^3+4\right)\)
\(P\left(x\right)-Q\left(x\right)=x^3-3x^2+6x-8+6x^2-x^3-4\)
\(P\left(x\right)-Q\left(x\right)=3x^2+6x-4\)
Ta cần phân tích \(3x^2+6x-4\) thành nhân tử
Ta có:\(P\left(x\right)-Q\left(x\right)=-\frac{1}{3}\left(-9x^2-18x+12\right)\)
\(=-\frac{1}{3}\left[21-\left(9x^2+18x+9\right)\right]\)
\(=-\frac{1}{3}\left[21-\left(3x+3\right)^2\right]\)
\(=-\frac{1}{3}\left(\sqrt{21}-3x-3\right)\left(\sqrt{21}+3x+3\right)\)
\(\Rightarrow x=\frac{\sqrt{21}-3}{3};x=\frac{-\sqrt{21}-3}{3}\)
a)\(x^2+x-x^2+2=0\)\(\Rightarrow x+2=0\)\(\Rightarrow x=-2\)
b)\(2\left(3x+2\right)-2\left(x+6\right)=0\)
\(\Rightarrow2\left(3x+2-x-6\right)=0\)
\(\Rightarrow2\left(2x-4\right)=0\)
\(\Rightarrow2x-4=0\Rightarrow x=2\)
c)\(4x^4-6x^3-4x^4+6x^3-2x^2=0\)
\(\Rightarrow-2x^2=0\Rightarrow x=0\)
d)\(\left(3x^2-x-2\right)-3\left(x^2-x-2\right)=4\)
\(\Rightarrow3x^2-x-2-3x^2+3x+6=4\)
\(\Rightarrow2x+4=4\Rightarrow2x=0\Rightarrow x=0\)
\(\left(6x+12\right)\left(-x-3\right)=0\)
\(\Rightarrow\left[6\cdot\left(x+2\right)\right]\cdot\left[-\left(x+3\right)\right]=0\)
\(\Rightarrow-6\left(x+2\right)\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=-3\end{matrix}\right.\)