Tính:
\(\left(\dfrac{3}{4}-81\right).\left(\dfrac{3^2}{5}-81\right).\left(\dfrac{3^3}{6}-81\right).....\left(\dfrac{3^{2000}}{2003}-81\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
x=13 nên x+1=14
\(f\left(x\right)=x^{14}-x^{13}\left(x+1\right)+x^{12}\left(x+1\right)-...+x^2\left(x+1\right)-x\left(x+1\right)+14\)
\(=x^{14}-x^{14}-x^{13}+x^{13}-...+x^3+x^2-x^2-x+14\)
=14-x=1
x=13 nên x+1=14
f(x)=x14−x13(x+1)+x12(x+1)−...+x2(x+1)−x(x+1)+14f(x)=x14−x13(x+1)+x12(x+1)−...+x2(x+1)−x(x+1)+14
=x14−x14−x13+x13−...+x3+x2−x2−x+14=x14−x14−x13+x13−...+x3+x2−x2−x+14
=14-x=1
Câu 2
(a+3)(b-4)-(a-3)(b+4)=0
=>ab-4a+3b-12-ab-4a+3b+12=0
=>-8a=-6b
=>a/b=3/4
=>a/3=b/4
\(a,=\dfrac{9}{4}-\dfrac{9}{4}+\dfrac{5}{6}=\dfrac{5}{6}\\ b,=\dfrac{4}{9}+1=\dfrac{13}{9}\)
a: \(A=\dfrac{9^4}{3^2}=\dfrac{\left(3^2\right)^4}{3^2}=\dfrac{3^8}{3^2}=3^6\)=729
b: \(B=81\left(\dfrac{5}{3}\right)^4=81\cdot\dfrac{5^4}{3^4}=\dfrac{81}{3^4}\cdot5^4=5^4=625\)
c: \(C=\left(\dfrac{4}{7}\right)^{-4}\cdot\left(\dfrac{2}{7}\right)^3\)
\(=\left(\dfrac{7}{4}\right)^4\cdot\left(\dfrac{2}{7}\right)^3\)
\(=\dfrac{7^4}{4^4}\cdot\dfrac{2^3}{7^3}\)
\(=\dfrac{2^3}{4^4}\cdot7\)
\(=\dfrac{2^3}{2^8}\cdot7=\dfrac{7}{2^5}=\dfrac{7}{32}\)
d: \(D=7^{-6}\cdot\left(\dfrac{2}{3}\right)^0\left(\dfrac{7}{5}\right)^6\)
\(=7^{-6}\left(\dfrac{7}{5}\right)^6\)
\(=\dfrac{1}{7^6}\cdot\dfrac{7^6}{5^6}=\dfrac{1}{5^6}=\dfrac{1}{15625}\)
e: \(E=8^3:\left(\dfrac{2}{3}\right)^5\cdot\left(\dfrac{1}{3}\right)^2\)
\(=2^6:\dfrac{2^5}{3^5}\cdot\dfrac{1}{3^2}\)
\(=2^6\cdot\dfrac{3^5}{2^5}\cdot\dfrac{1}{3^2}\)
\(=\dfrac{2^6}{2^5}\cdot\dfrac{3^5}{3^2}=3^3\cdot2=54\)
f: \(F=\left(\dfrac{7}{9}\right)^{-2}\cdot\left(\dfrac{1}{\sqrt{3}}\right)^8\)
\(=\left(\dfrac{9}{7}\right)^2\cdot\left(\dfrac{1}{3}\right)^4\)
\(=\dfrac{9^2}{7^2}\cdot\dfrac{1}{3^4}=\dfrac{9^2}{3^4}\cdot\dfrac{1}{7^2}=\dfrac{81}{81}\cdot\dfrac{1}{49}=\dfrac{1}{49}\)
g: \(G=\left(-\dfrac{4}{5}\right)^{-2}\cdot\left(\dfrac{2}{5}\right)^2\cdot\left(\sqrt{2}\right)^3\)
\(=\left(-\dfrac{5}{4}\right)^2\cdot\left(\dfrac{2}{5}\right)^2\cdot2\sqrt{2}\)
\(=\dfrac{25}{16}\cdot\dfrac{4}{25}\cdot2\sqrt{2}=\dfrac{4}{16}\cdot2\sqrt{2}=\dfrac{8\sqrt{2}}{16}=\dfrac{\sqrt{2}}{2}\)
Bài 1:
$(y+\frac{1}{3})+(y+\frac{1}{9})+(y+\frac{1}{27})+(y+\frac{1}{81})=\frac{56}{81}$
$(y+y+y+y)+(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81})=\frac{56}{81}$
$4\times y+\frac{40}{81}=\frac{56}{81}$
$4\times y=\frac{56}{81}-\frac{40}{81}=\frac{16}{81}$
$y=\frac{16}{81}:4=\frac{4}{81}$
Bài 2:
$18: \frac{x\times 0,4+0,32}{x}+5=14$
$18: \frac{x\times 0,4+0,32}{x}=14-5=9$
$\frac{x\times 0,4+0,32}{x}=18:9=2$
$x\times 0,4+0,32=2\times x$
$2\times x-x\times 0,4=0,32$
$x\times (2-0,4)=0,32$
$x\times 1,6=0,32$
$x=0,32:1,6=0,2$
\(\dfrac{8^{14}}{4^4.64^5}=\dfrac{\left(2^3\right)^{14}}{\left(2^2\right)^4.\left(2^5\right)^5}=\dfrac{2^{42}}{2^8.2^{25}}=2^{42-\left(8+25\right)}=2^9\)
\(\dfrac{9^{10}.27^7}{81^7.3^{15}}=\dfrac{\left(3^2\right)^{10}.\left(3^3\right)^7}{\left(3^4\right)^7.3^{15}}=\dfrac{3^{20}.3^{21}}{3^{28}.3^{15}}=\dfrac{3^{20+21}}{3^{28+15}}=\dfrac{3^{41}}{3^{41}.3^2}=\dfrac{1}{3^2}=\dfrac{1}{9}\)
(3/4 -81 )(3^2/5 -81 )(3^3/6 -81)......(3^2000/2003 -81)
ta viết tiếp dãy số (3/4 -81 )(3^2/5 -81 )(3^3/6 -81)(3^4/7 - 81 ) (3^5/8 -81)(3^6/9 -81).........(3^2000/2003 -81) thì thấy 3^6/9=81 ->3^6/9 -81=0 -> dãy số bằng 0 -> (3/4 -81 )(3^2/5 -81 )(3^3/6 -81)......(3^2000/2003 -81) =0
Minh k hiểu cho lắm. Bạn viết theo công thức toán olm cho sẵn đi cho dễ đọc
\(\left(\frac{3}{4}-81\right)\left(\frac{3^2}{5}-81\right)\left(\frac{3^3}{6}-81\right)....\left(\frac{3^{2000}}{2003}-81\right)\)
\(=\left(\frac{3}{4}-81\right)\left(\frac{3^2}{5}-81\right)\left(\frac{3^3}{6}-81\right)...\left(\frac{3^6}{9}-81\right)...\left(\frac{3^{2000}}{2003}-81\right)\)
\(=\left(\frac{3}{4}-81\right)\left(\frac{3^2}{5}-81\right)\left(\frac{3^3}{6}-81\right)....\left(81-81\right)...\left(\frac{3^{2000}}{2003}-81\right)\)
\(=\left(\frac{3}{4}-81\right)\left(\frac{3^2}{5}-81\right)....0....\left(\frac{3^{2000}}{2003}-81\right)\)
\(=0\)
Đặt \(A=\left(\dfrac{3}{4}-81\right)\left(\dfrac{3^2}{5}-81\right)\left(\dfrac{3^3}{6}-81\right)\cdot...\cdot\left(\dfrac{3^{2000}}{2003}-81\right)\)
\(=\left(\dfrac{3^6}{9}-81\right)\cdot\left(\dfrac{3}{4}-81\right)\left(\dfrac{3^2}{5}-81\right)\cdot...\cdot\left(\dfrac{3^{2000}}{2003}-81\right)\)
\(=\left(81-81\right)\cdot\left(\dfrac{3}{4}-81\right)\left(\dfrac{3^2}{5}-81\right)\cdot...\cdot\left(\dfrac{3^{2000}}{2003}-81\right)\)
=0